Python:编写相似度计算算法(全代码)

82 篇文章 ¥59.90 ¥99.00
本文介绍了在自然语言处理和机器学习中常用的两种文本相似度计算方法——余弦相似度和Jaccard相似度,并提供了Python实现的完整代码。余弦相似度通过计算向量的夹角余弦值,Jaccard相似度则基于集合的交集与并集比值,两者都可用于文本分类和信息检索任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Python:编写相似度计算算法(全代码)

在自然语言处理、机器学习等领域中,计算文本之间的相似度是一个常见的任务。本文将介绍两种简单但有效的计算文本相似度的算法:余弦相似度和Jaccard相似度。同时,提供Python实现的完整源代码。

  1. 余弦相似度

余弦相似度是通过计算两个向量的夹角余弦值来衡量它们之间的相似性。在文本处理中,可以将每个文本看作向量,并使用其tf-idf表示法计算出向量,从而计算文本之间的余弦相似度。

下面是用Python实现计算余弦相似度的代码:

import numpy as np
from sklearn.feature_extraction.text import TfidfVectorizer

def cos_similarity
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值