自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

PixelMind的博客

专注AI、底层视觉、影像技术领域,解读前沿图像技术,分享使用经验技巧,提供专业咨询和图像解决方案

  • 博客(48)
  • 收藏
  • 关注

原创 【LUT技术专题】全LUT图像增强-ICELUT

Look-Up Table(查找表,LUT)是一种数据结构(也可以理解为字典),通过输入的key来查找到对应的value。其优势在于无需计算过程,不依赖于GPU、NPU等特殊硬件,本质就是一种内存换算力的思想。LUT在图像处理中是比较常见的操作,如Gamma映射,3D CLUT等。近些年,LUT技术已被用于深度学习领域,由SR-LUT启发性地提出了模型训练+LUT推理的新范式。

2025-07-08 08:52:21 725

原创 【LLIE专题】通过预训练模型先验提升暗光增强模型复原效果

本文提出一种利用预训练模型先验增强图像恢复性能的新方法PTG。该方法通过轻量级的预训练引导细化模块(PTG-RM),整合预训练模型(如CLIP、Stable Diffusion)提取的特征先验,提升低光增强等图像恢复任务的性能。

2025-07-07 21:10:20 854

原创 【LLIE专题】EnlightenGAN 无监督低照度图像增强代码解读

本文解读了EnlightenGAN无监督低照度图像增强的代码实现。EnlightenGAN采用全局-局部判别器、自正则化感知损失和注意力引导U-Net生成器,无需配对数据即可增强暗光图像。

2025-07-06 15:11:34 750

原创 【LUT技术专题】CLUT代码讲解

代码实现核心的部分讲解完毕,跟以往最不同的部分就在于这个CLUT的计算矩阵,把这部分看明白就行。

2025-07-04 21:39:57 669

原创 【LUT技术专题】3DLUT压缩-CLUT

本文提出CLUT-Net方法,通过自适应压缩3DLUT表示实现轻量级图像增强。针对传统3DLUT在增加基础LUT数量时参数量线性增长的问题,作者发现3DLUT输出通道仅与一个输入通道强相关。基于此,设计了一种压缩自适应变换矩阵,将原始3DLUT分解为强相关和弱相关两个子矩阵。实验表明,该方法在保持性能的同时将参数量减少99%,计算量降低60%。在多个基准测试中,CLUT-Net以28k参数实现与2156k参数的3DLUT相当的效果,验证了该压缩方法的有效性。

2025-07-03 23:12:34 1209

原创 【IQA技术专题】大模型视觉强化学习IQA:Q-Insight

图像质量评价(Image Quality Assessment, IQA)是图像处理、计算机视觉和多媒体通信等领域的关键技术之一。IQA不仅被用于学术研究,更在影像相关行业内实现了完整的商业化应用,涉及影视、智能手机、专业相机、安防监控、工业质检、医疗影像等。IQA与图像如影随形,其重要程度可见一斑。但随着算法侧的能力不断突破,AIGC技术发展火热,早期的IQA或已无法准确评估新技术的能力。另一方面,千行百业中各类应用对图像质量的需求也存在差异和变化,旧标准也面临着适应性不足的挑战。

2025-06-29 22:50:59 846

原创 【LLIE专题】EnlightenGAN 无监督低照度图像增强

EnlightenGAN(2021)提出了一种无监督学习的低光照图像增强方法,无需配对数据即可训练。该模型通过全局-局部判别器结构(结合相对判别器与LSGAN损失)优化整体光照与局部细节,避免过曝/欠曝;引入自正则化感知损失(基于VGG特征约束输入与输出的内容一致性);并采用注意力机制指导网络重点增强暗区。

2025-06-28 19:10:29 1302

原创 【LUT技术专题】SepLUT代码讲解

SepLUT技术将传统3DLUT分解为颜色无关的1DLUT和颜色相关的3DLUT,实现高效图像增强。其核心流程包括:轻量级CNN提取context向量,生成3个1DLUT和1个3DLUT作为变换权重,通过高效查找与插值完成增强。代码基于mmedit框架实现,主要模块包括splut_transform(插值运算CPP实现)和model.py(网络主干)。SepLUT类整合了backbone、权重预测器和LUT生成器,支持量化处理,并通过稀疏性、平滑性等正则化约束优化效果。该设计平衡了计算效率与增强性能,适用于

2025-06-25 22:44:09 958

原创 【LUT技术专题】1D和3DLUT的高效组合-SepLUT

本文解析了《SepLUT: Separable Image-adaptive Lookup Tables for Real-time Image Enhancement》的核心思想。该研究受ISP启发,将传统3DLUT分解为1DLUT(用于独立颜色变换)和3DLUT(用于色彩混合),显著提升了效率与效果。实验表明,该方法在多个数据集上性能优于纯3DLUT方案,且计算耗时相近。消融实验验证了1DLUT的必要性以及量化后的资源优势。该工作为LUT技术在图像增强领域的轻量化应用提供了新思路。

2025-06-24 22:09:12 847

原创 【LLIE专题】NTIRE 2025 低照度图像增强第一名方案解读

本文提出了一种创新的并行集成方法,通过线性融合三种互补模型(ESDNet、Retinexformer和CIDNet)来提升低光增强效果。该框架基于希尔伯特空间理论,证明当模型映射近似正交时,线性组合能最大化覆盖目标域。该方法在NTIRE2025挑战赛中夺冠,为低光增强提供了高效、稳定的解决方案。

2025-06-22 18:11:42 1132

原创 【LUT技术专题】AdaInt代码讲解

摘要:本文对AdaInt技术进行代码解读,该技术针对3DLUT均匀采样的不足,提出自适应采样间隔方法以减少非线性段插值误差。代码基于MMEditing框架实现,核心模块包括TPAMIBackbone(轻量CNN)和LUTGenerator(权重预测与基础LUT生成)。TPAMIBackbone通过5层卷积提取特征,LUTGenerator则结合线性层生成权重和基础LUT,并通过非均匀采样优化3DLUT渲染。

2025-06-20 21:07:24 1072

原创 【LUT技术专题】采样间隔自适应3DLUT-AdaInt

本文提出AdaInt方法改进3DLUT的均匀采样策略,通过自适应调整采样间隔来减小非线性区域的误差。该方法包含AdaInt模块生成非均匀采样点,以及AiLUT-Transform可微分算子实现端到端训练。实验表明,该方法在多个图像增强基准测试中达到SOTA效果。

2025-06-19 23:16:39 1177

原创 【LLIE专题】基于生成感知先验的低照度图像增强

本文提出了一种基于生成感知先验(GPP-LLIE)的低光照图像增强方法,利用视觉语言模型(VLM)提取全局和局部感知先验指导增强过程。

2025-06-17 21:21:28 970

原创 【IQA技术专题】PSNR和SSIM

本文介绍了两种常见的全参考图像质量评价指标PSNR和SSIM。PSNR(峰值信噪比)通过计算图像间的均方误差来评估保真度,公式为10×lg(MAX²/MSE),代码实现支持RGB通道和Y通道两种模式。SSIM(结构相似性)则从亮度、对比度和结构三方面衡量图像相似性,采用窗口滑动计算后取平均值。两种指标各有特点:PSNR计算简单但易受噪声影响,SSIM更符合人类视觉感知但复杂度较高。文中还推荐了开源IQA-pytorch工具库,便于实际应用中的指标计算。这些指标在图像处理、压缩和复原等领域具有重要应用价值。

2025-06-15 21:01:07 1141

原创 【LUT技术专题】4DLUT代码讲解

本文解读了4DLUT技术的核心代码实现。4DLUT通过引入上下文编码器提取像素级上下文信息,与RGB图像组成4通道输入,克服了传统3DLUT的局部处理局限。代码实现包含三个核心模块:1)Context Encoder(Generator_for_info类)生成上下文映射;2)Param Encoder(Generator_for_bias类)输出12个融合参数;3)4DLUT初始化与融合(Generator4DLUT_identity类)加载基础LUT并执行四次线性插值。此外还包含平滑/单调性正则损

2025-06-14 21:00:11 1093

原创 【LLIE专题】NTIRE 2025 低照度图像增强第二名方案代码解读

本文解读了NTIRE 2025低照度图像增强第二名方案SG-LLIE的代码实现。该方案采用U-Net架构,通过混合结构引导特征提取器(HSGFE)模块在编码器-解码器各层级融合多尺度特征。

2025-06-13 20:46:38 792

原创 【IQA技术专题】图像质量评价IQA技术和应用综述(万字长文!!)

图像质量评价(IQA)技术是图像处理和计算机视觉领域的关键,广泛应用于影视、医疗、工业质检等行业。IQA方法主要分为主观评价(依赖人类感知)和客观评价(基于算法模型)。随着AIGC技术的发展,传统IQA面临适应性挑战,而大模型的出现为精准评估提供了新思路。IQA技术正朝着多维度、智能化方向发展,需兼顾人类主观感知与机器

2025-06-11 22:10:43 1996

原创 【LUT技术专题】带语义的图像自适应4DLUT

本文提出了一种创新的4DLUT方法,用于解决传统3DLUT在局部图像增强中的局限性。该研究通过在RGB三通道基础上引入上下文感知的第四维度,实现了基于语义内容的自适应图像增强。方法主要包含四个关键步骤:上下文编码器提取语义信息、参数编码器生成融合权重、基础4DLUT的语义感知融合,以及四次线性插值输出增强图像。实验表明,该方法在多个基准测试中显著优于现有技术,且计算成本仅轻微增加。4DLUT的创新之处在于将查找表维度扩展到4D空间,实现了像素级的上下文感知增强,为图像处理领域提供了新的技术路径。

2025-06-08 21:20:10 1100

原创 【LLIE专题】NTIRE 2025 低照度图像增强第二名方案

本文提出SG-LLIE,一种基于结构先验引导的CNN-Transformer混合框架,用于低光照图像增强。该方法在NTIRE 2025挑战赛中取得第二名的排名。

2025-06-05 22:23:59 1737

原创 【LUT技术专题】图像自适应3DLUT代码讲解

本文解读了图像自适应3DLUT技术的代码实现,该技术结合3D LUT和CNN,支持成对/非成对数据训练,实现高效图像增强。代码核心包括:1)Classifier类实现CNN权重预测,通过下采样和卷积生成3个输出权重;2)TrilinearInterpolation类用CUDA实现三线性插值的前向/反向计算;3)TV_3D类计算平滑和单调性正则损失。模型结构轻量,通过HR->LR下采样和权重预测实现低资源消耗,同时保持图像增强质量。整体方案在保持效果的同时显著降低了计算复杂度。

2025-06-03 22:50:06 914

原创 【LUT技术专题】图像自适应3DLUT

本文提出了一种基于学习的图像自适应3D查找表(3DLUT)方法,用于高性能实时照片增强。传统3DLUT需要手工设计且缺乏灵活性,而深度学习方法虽性能优异但计算成本高。作者结合CNN和3DLUT的优势,通过CNN预测权重动态生成适应不同图像的3DLUT,既保持了LUT的高效性,又提升了增强效果。模型仅需600k参数,在4K分辨率图像上处理仅需2ms,显著优于现有方法。实验验证了该方法在成对和非成对数据集上的优越性,为实时图像增强提供了实用解决方案。

2025-05-31 23:58:59 1814

原创 【LLIE专题】 Retinexformer代码解读

本文章是RetinexFormer代码解读。

2025-05-29 22:34:40 784

原创 【LLIE专题】 CLIP-LIT代码解读

本文是CLIP-LIT技术的代码讲解。

2025-05-26 22:09:55 1126

原创 【LUT技术专题】TinyLUT代码解读

TinyLUT通过2个不同的策略来最大程度的减小了LUT尺寸,且保持了模型的效果。

2025-05-25 17:47:31 1078 34

原创 【LUT技术专题】极小尺寸LUT算法:TinyLUT

TinyLUT是一种极轻量化的查找表(LUT)算法,旨在通过LUT替代计算,显著减小LUT的尺寸,同时提升图像恢复的效果。该算法在2024年NeurIPS会议上提出,主要亮点在于其分离映射策略(Separable Mapping Strategy, SMS)和动态离散化机制(Dynamic Discretization Mechanism, DDM)。

2025-05-23 20:58:27 1338 3

原创 【LLIE专题】基于事件相机照度估计的暗光增强方案

本文提出了一种基于事件相机的低光图像增强方法 RETINEV,通过利用事件相机的时间映射事件估计光照信息,并结合 Retinex 理论实现了对低光图像的高效增强。

2025-05-22 23:06:15 1375

原创 【LUT技术专题】DnLUT代码解读

本文详细解读了DnLUT技术的代码实现,重点介绍了其两个创新点:PCM模块(PairwiseChannelMixer)和L型卷积(RotationNon-overlappingKernel)。PCM模块通过3个1x2卷积实现通道和空间的交互,而L型卷积通过1x3卷积核减少旋转中的重叠,从而在相同感受野条件下降低LUT尺寸。

2025-05-20 22:22:33 1429

原创 【LLIE专题】基于Retinex理论的transformer暗光增强

Retinexformer通过结合Retinex分解和Transformer架构,有效提升了低光照图像的质量,同时保留了图像的细节信息并抑制了噪声和伪影的放大。

2025-05-18 21:20:10 1170

原创 【LUT技术专题】针对降噪优化的通道感知轻量级LUT算法:DnLUT

DnLUT是一种基于通道感知查找表(LUT)的超高效彩色图像去噪方法,旨在解决现有LUT方法在降噪任务中的局限性。通过引入Pairwise Channel Mixer(PCM)模块和L型卷积核,DnLUT在保持低存储和功耗的同时,显著提升了去噪效果。PCM模块通过并行处理通道和空间交互,有效降低了色噪声,而L型卷积核则减少了存储开销,实现了更大的感受野。实验表明,DnLUT在CPSNR指标上优于现有方法,且存储量仅为500kb,功耗仅为深度神经网络(DNN)的0.1%。该方法为图像去噪提供了一种轻量级且高效

2025-05-17 22:54:42 1582 3

原创 【超分辨率专题】一种考量视频编码比特率优化能力的超分辨率基准

本文介绍了一个新的基准测试(benchmark),旨在评估超分辨率(SR)技术在视频压缩比特率优化中的应用。该研究提出了一个综合的评测框架,涵盖了5种视频编解码器和19种SR模型,并在不同压缩比特率下进行了测试。作者期望该工作能够推动SR在实时编解码场景中的应用,为低带宽高清视频传输提供技术路径。

2025-05-16 22:04:53 1030

原创 【LLIE专题】基于码本先验与生成式归一化流的低光照图像增强新方法

GLARE 方法的核心思想是利用编码本中的潜在特征来指导低光照图像的增强过程。具体来说,该方法首先将输入的低光照图像分解为多个潜在特征,这些潜在特征能够捕捉图像的不同属性,如亮度、颜色、纹理等。然后,通过检索与之匹配的高质量潜在特征,将这些高质量潜在特征与原始低光照图像特征进行融合,从而生成增强后的图像。

2025-05-15 22:11:29 1164

原创 【LUT技术专题】SPFLUT代码解读

SPFLUT方法重点在于对角线优先压缩策略,该方法总体流程分为4个部分,训练、转换(里面包含了压缩)、微调、测试。

2025-05-13 21:31:35 1052

原创 【LUT技术专题】LUT空间的极致压缩-SPFLUT

SPFLUT提出了一种基于查找表(LUT)的高效图像恢复方法,通过压缩策略减少LUT的冗余,提升性能并降低存储需求。该方法的核心是对角线优先压缩策略(DFC),针对LUT中对角线区域的高频使用特点,保留对角线部分并减少非对角线区域的采样,从而显著减小LUT尺寸。SPFLUT还设计了一个多LUT网络结构,增强了通道特征融合,进一步提升了恢复效果。实验表明,该方法在效果和存储效率之间达到了最佳平衡,尤其在LUT尺寸大幅减小的情况下,性能依然保持优异。

2025-05-11 20:04:20 1065

原创 【LUT技术专题】ECLUT代码解读

本文是对ECLUT技术的代码解读,原文解读请看。

2025-05-09 22:24:09 1315

原创 【LUT技术专题】基于扩展卷积的极快速LUT算法

ECLUT提出扩展卷积(expand Conv)搭配一个简单有效的scaling方法来减小旋转累计的量化误差实现极快速的高精度LUT算法,该方法的计算成本基本可以忽略不计。

2025-05-07 21:15:12 1029 1

原创 【LLIE专题】基于 CLIP 的无监督背光增强算法

(CLIP-LIT)该方法开创性地挖掘对比语言 - 图像预训练(CLIP)模型在像素级图像增强任务中的潜力,巧妙地借助 CLIP 模型丰富的视觉 - 语言先验知识,实现无需成对训练数据的逆光图像高质量增强。

2025-05-06 22:18:08 1409

原创 【LUT技术专题】RCLUT代码解读

本文是对RCLUT技术的代码解读,原文解读请看。

2025-05-05 20:52:52 828

原创 【LUT技术专题】RCLUT: Reconstructed Convolution Module Based Look-Up Tables for Efficient Image SR

RCLUT提出了一个RC模块来提升网络的感受野,用了极小的代价提升了原始MULUT和SRLUT的一个效果。RCLUT的理论感受野已经提升至27x27,比MULUT、和SPLUT提升不少,但实际效果的提升有限,毕竟用于提升感受野的算子还是avg池化。代码部分将会单起一篇进行解读。(未完待续)

2025-04-29 00:13:21 1443

原创 【LLIE专题】HVI代码解读

本文是对HVI技术的代码解读。

2025-04-27 22:17:18 894

原创 【图像去噪专题】NTIRE 2025:The Tenth NTIRE2025 Image Denoising Challenge Report

本文对NITRE2025的image denoising challenge report做了介绍,简要说明了各个团队的方案。

2025-04-26 21:37:57 1368

图像超分-ECLUT-快速查找-代码实现

ECLUT的代码实现,适用于想要了解代码细节的群体,可以在一些轻量级的超分场景中使用,达到一个接近普通插值速度但效果超过普通插值的超分效果。

2025-05-09

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除