在当前 Conda 虚拟环境中安装 cuDNN
要在当前 Conda 虚拟环境中安装 cuDNN,可以按照以下步骤进行操作。假设你已经下载了 cudnn-11.2-linux-x64-v8.1.1.33.tgz 文件。
- 激活 Conda 虚拟环境
首先,确保你已经激活了目标 Conda 虚拟环境:
sh
conda activate vits
2. 解压 cuDNN 文件
解压下载的 cuDNN 文件:
sh
tar -xzvf cudnn-11.2-linux-x64-v8.1.1.33.tgz
解压后,你会看到一个 cuda 目录,里面包含 include 和 lib64 子目录。
- 复制 cuDNN 文件到 Conda 环境
将解压后的 cuDNN 文件复制到 Conda 虚拟环境的相应目录中。
找到 Conda 环境的路径:
sh
conda info --envs
记下你的 vits 环境的路径,例如 /home/nvidia/miniconda3/envs/vits。
复制 include 目录:
sh
cp -r cuda/include/* /home/nvidia/miniconda3/envs/vits/include/
复制 lib64 目录:
sh
cp -r cuda/lib64/* /home/nvidia/miniconda3/envs/vits/lib/
4. 更新动态链接库缓存
更新动态链接库缓存,确保系统能够找到新复制的库文件:
sh
ldconfig
5. 验证安装
验证 cuDNN 是否安装成功,可以通过运行一些简单的测试来检查。例如,可以使用 TensorFlow 或 PyTorch 来验证:
使用 TensorFlow 验证
sh
python -c “import tensorflow as tf; print(tf.config.list_physical_devices(‘GPU’))”
使用 PyTorch 验证
sh
python -c “import torch; print(torch.cuda.is_available())”
如果输出显示 GPU 可用,说明 cuDNN 安装成功。
总结
通过以上步骤,你应该能够在当前 Conda 虚拟环境中成功安装 cuDNN。以下是完整的命令序列:
激活 Conda 虚拟环境:
sh
conda activate vits
解压 cuDNN 文件:
sh
tar -xzvf cudnn-11.2-linux-x64-v8.1.1.33.tgz
复制 cuDNN 文件到 Conda 环境:
sh
cp -r cuda/include/* /home/nvidia/miniconda3/envs/vits/include/
cp -r cuda/lib64/* /home/nvidia/miniconda3/envs/vits/lib/
更新动态链接库缓存:
sh
ldconfig
验证安装:
sh
python -c “import tensorflow as tf; print(tf.config.list_physical_devices(‘GPU’))”
python -c “import torch; print(torch.cuda.is_available())”
希望这能帮助你顺利完成 cuDNN 的安装。如果有任何问题,请提供具体的错误信息,以便进一步诊断。