单例模式,随机选择

单例模式:
某一个类,只有一个实例,自动实例化向整个系统提供这个实例
单例类写法:

class A(object):
    __instance=None
    def __new__(cls, *args, **kwargs):
        if not cls.__instance:
            cls.__instance=super(A, cls).__new__(cls,*args,**kwargs)
        return  cls.__instance

if __name__ == '__main__':
    a=A()
    print(id(a))

    a1=A()
    print(id(a1))

    a2 = A()
    print(id(a2))

id()指向对象的内存地址

单例模式的优缺点:
优点:
1、在单例模式中,活动的单例只有一个实例,对单例类的所有实例化得到的都是同样的一个实例,确保所有的对象访问的一个实例
2、提供了对唯一实例的受控访问
主要的一点:3、内存中只有一个对象,节约系统资源
4、可以实现可变数目的实例
5、避免对资源的多重占用
缺点:
1、不适用变化的对象,单例会引起数据错误
2、扩展有困难
3、开销问题

单例模式应用的场景:
资源管理类一般设计成单例模式
需要频繁实例化然后销毁的对象
创建对象耗时或者活飞资源过多但又经常用到的对象
有状态的工具类对象
频繁访问数据库或者文件的对象

随机选择:

import random
from random import choice
list_new=[1,2,3,4,'asd']
ret=random.choice(list_new)
内容概要:本文提出了一种融合多尺度Wavelet模型的跨文化英语交际智能模型系统(FL-DP-Wavelet),旨在通过多模态数据融合、多尺度特征提取与跨文化适应性建模,提升智能系统的文化敏感性和语境理解能力。该模型通过结合小波变换与深度学习优化语言信号的时频特征提取,基于跨文化敏感性发展模型(DMIS)构建文化适应性评估模块,并设计多模态数据融合框架,增强跨文化场景下的语义解析鲁棒性。实验结果显示,系统在跨文化语境下的语义理解准确率提升12.7%,文化适应性评分优于基线模型15.3%。 适合人群:从事跨文化交流、国际商务、外语教育的研究人员和技术开发者,特别是对智能系统在跨文化场景中的应用感兴趣的学者和工程师。 使用场景及目标:①跨文化商务谈判、教育合作和公共外交等场景中,需要提升智能系统的文化敏感性和语境理解能力;②帮助系统实现实时文化适应,减少因文化差异引起的语义误判和非语言行为冲突;③通过多模态数据融合,增强智能系统在复杂跨文化环境中的语义解析能力。 其他说明:该研究不仅提出了新的理论框架和技术路径,还在实际应用中验证了其有效性和优越性。未来将聚焦于小波-Transformer耦合、联邦学习隐私保护和在线学习算法,进一步推动系统向自主文化融合演进。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值