据《福布斯》报道,商业的未来是自动化。他们报告说,自动化的应用是不可避免的,“工人们即将被一个圈子和一套规则包围,要严格遵守,不能偏离。得益于聊天机器人ChatGPT于2022年11月推出所带来的强劲加持,2023年成为了AI(人工智能)发展史上的一个转折点,活跃的开源环境和多模态模型一同推动了AI研究的进步。随着生成式AI持续从实验室走入现实,技术不断进步,关于其未来发展方向的讨论也愈发激烈。究竟生成式AI的未来是在对话系统(Chat)中展现智慧,还是在自主代理(Agent)中体现能力?这一问题引发了广泛的讨论和探索。这里谈谈我的看法。
1 从预测式AI到生成式AI
1.1 预测式AI
在生成式AI受到瞩目之前,大多数AI应用都使用了预测式AI(Predictive AI)。顾名思义,所谓预测式AI,就是根据现有数据进行预测趋势或提供见解,但它不会生成全新的内容。
比较典型的例子是德国马克斯·普朗克光科学研究所的马里奥·克莱恩及其同事们训练了一个人工智能模型,对1994年至2021年期间在arXiv预印本服务器上发表的143000篇涵盖了与人工智能有关领域的论文进行分析,并预测哪些未经研究的概念会在五年内出现在至少三篇论文中,准确率超过99.5%。
以下是一些预测式AI的典型代表:
-
人工神经网络(Artificial Neural Networks,ANNs):一种模仿人类大脑结构和功能的计算模型,常用于图像识别、语音识别、自然语言处理等领域的预测任务。
-
支持向量机(Support Vector Machines,SVM):一种监督学习算法,用于分类和回归分析,可以根据已知样本的特征进行预测。
-
隐马尔可夫模型(Hidden Markov Models,HMMs):一种概率模型,用于建模序列数据,例如语音识别、自然语言处理等任务。
-
决策树(Decision Trees):一种基于树状结构的预测模型,可以根据特征属性进行分类或回归分析。
-
随机森林(Random Forests):一种基于决策树的集成学习方法,通过多个决策树的组合进行预测,提高了准确性和稳定性。
-
K近邻算法(K-Nearest Neighbors,KNN):一种基于相似性度量的分类和回归算法,通过计算样本与最近邻的距离来预测样本的标签或数值。
-
集成学习(Ensemble Learning):一种通过组合多个预测模型来提高准确性的方法,例如Bagging、Boosting等。
注意,以上只是一些典型的预测式AI代表,实际上还有很多其他的算法和模型可以用于预测任务。
1.2 生成式AI
生成式AI(Generative AI)是通过大数据集训练的深度学习模型来创建新内容的技术。
与预测式AI不同,生成式AI会利用机器学习,从训练数据中学到“思考”的模式,以此创造具有原创性的输出。
近