生成式 AI 的发展方向,是 Chat 还是 Agent?

据《福布斯》报道,商业的未来是自动化。他们报告说,自动化的应用是不可避免的,“工人们即将被一个圈子和一套规则包围,要严格遵守,不能偏离。得益于聊天机器人ChatGPT于2022年11月推出所带来的强劲加持,2023年成为了AI(人工智能)发展史上的一个转折点,活跃的开源环境和多模态模型一同推动了AI研究的进步。随着生成式AI持续从实验室走入现实,技术不断进步,关于其未来发展方向的讨论也愈发激烈。究竟生成式AI的未来是在对话系统(Chat)中展现智慧,还是在自主代理(Agent)中体现能力?这一问题引发了广泛的讨论和探索。这里谈谈我的看法。

1 从预测式AI到生成式AI

1.1 预测式AI

在生成式AI受到瞩目之前,大多数AI应用都使用了预测式AI(Predictive AI)。顾名思义,所谓预测式AI,就是根据现有数据进行预测趋势或提供见解,但它不会生成全新的内容。

比较典型的例子是德国马克斯·普朗克光科学研究所的马里奥·克莱恩及其同事们训练了一个人工智能模型,对1994年至2021年期间在arXiv预印本服务器上发表的143000篇涵盖了与人工智能有关领域的论文进行分析,并预测哪些未经研究的概念会在五年内出现在至少三篇论文中,准确率超过99.5%。

以下是一些预测式AI的典型代表:

  1. 人工神经网络(Artificial Neural Networks,ANNs):一种模仿人类大脑结构和功能的计算模型,常用于图像识别、语音识别、自然语言处理等领域的预测任务。

  2. 支持向量机(Support Vector Machines,SVM):一种监督学习算法,用于分类和回归分析,可以根据已知样本的特征进行预测。

  3. 隐马尔可夫模型(Hidden Markov Models,HMMs):一种概率模型,用于建模序列数据,例如语音识别、自然语言处理等任务。

  4. 决策树(Decision Trees):一种基于树状结构的预测模型,可以根据特征属性进行分类或回归分析。

  5. 随机森林(Random Forests):一种基于决策树的集成学习方法,通过多个决策树的组合进行预测,提高了准确性和稳定性。

  6. K近邻算法(K-Nearest Neighbors,KNN):一种基于相似性度量的分类和回归算法,通过计算样本与最近邻的距离来预测样本的标签或数值。

  7. 集成学习(Ensemble Learning):一种通过组合多个预测模型来提高准确性的方法,例如Bagging、Boosting等。

注意,以上只是一些典型的预测式AI代表,实际上还有很多其他的算法和模型可以用于预测任务。

1.2 生成式AI

生成式AI(Generative AI)是通过大数据集训练的深度学习模型来创建新内容的技术。

与预测式AI不同,生成式AI会利用机器学习,从训练数据中学到“思考”的模式,以此创造具有原创性的输出。

### 生成式AI最新研究方向发展趋势 #### 跨学科应用的深化 生成式AI正逐步深入到更多传统科学技术领域,通过与生物学、物理学社会科学等多学科交叉融合,创造出前所未有的科研成果应用场景。例如,在药物研发过程中利用生成对抗网络(GANs)加速分子结构设计;或是借助强化学习算法优化物理实验参数设置[^3]。 #### 综合平台建设 当前的研究还致力于打造集成化的服务平台,旨在把不同类型的生成任务统一起来,形成一站人工智能解决方案。这类平台不仅可以支持常规的文字交流对话系统(Chat),还能执行复杂的自动化操作(如机器人控制Agent), 同时具备强大的内容创作能力。这标志着从单一功能模块向多功能综合体转变的趋势正在加快。 #### 协同工作模探索 为了更好地发挥人机协作的优势,研究人员积极探索如何让机器理解并适应人的意图,从而建立更加紧密的合作关系。具体措施包括但不限于改进现有的交互界面设计,使非专业人士也能轻松驾驭高级别的AI工具;开发新的编程范来简化定制化服务流程等等。 ```python # Python代码示例:模拟简单的人机互动场景 def human_machine_collaboration(task_description, user_input): """ 根据给定的任务描述用户输入, 返回由AI辅助完成的结果。 参数: task_description (str): 需要解决的问题说明 user_input (list): 用户提供的初始数据 返回: result (dict): 包含最终输出的信息字典 """ # 假设这里是调用了某些API接口获取到了增强后的结果... enhanced_result = some_api_call(task_description, user_input) return {"status": "success", "data": enhanced_result} ``` #### 技术前沿突破 除了上述几个方面外,生成模型本身也在持续进化当中。比如变分自编码器(VAE)、扩散模型(diffusion models)等新型架构相继涌现,它们各自拥有独特优势,在特定条件下可以取得优于以往方法的表现。与此同时,针对这些新技术所带来的计算资源消耗过高等问题也开始受到重视,并成为下一步重点攻关对象之一[^4]。
评论 36
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

紫郢剑侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值