Pandas比MySQL快?

知乎上有人问,处理百万级数据,Python列表、Pandas、Mysql哪个更快?

图片

Pands是Python中非常流行的数据处理库,拥有大量用户,所以拿它和Mysql对比也是情理之中。

实测来看,MySQL > Pandas > Python列表,而且MySQl远快于后两个,几乎是碾压。

这主要是数据库语言和编程语言的差异,其实是不同层面的东西。

图片

Python列表和Pandas是基于内存操作的,百万级数据内存占用高,可能会溢出。

但Pandas算法更优,所以快于Python列表。

Pandas主要基于numpy向量化计算,而且像排序、聚合等算法优化的比较好,一般会比Python列表更快3倍以上。

如果内存占用大,Pandas可以分块读取,所以对于大数据比Python列表有更好的处理能力。

MySQL无疑是最快的,这一点相信写过SQL的人能感受到。

它的数据存储在磁盘,得益于索引和查询优化,而且有分页查询、多线程等,比Pandas和Python列表快很多。

举几个列子,分别是聚合、排序、复杂查询操作。

1、聚合操作(求和)

Python列表(分钟级)需要对嵌套列表进行if遍历,再求和,这非常慢。

Pandas(十秒级)可以用向量化计算来实现,比如df.groupby().sum()

Mysql(秒级)结合索引优化和聚合函数,使用select sum(...) from ... group by...

2、排序操作

Python列表(分钟级)使用内置sort()和sorted()方法,时间复杂度高

Pandas(十秒级)使用pandassort_values方法实现,调用C底层算法,比较快

Mysql(秒级)通过索引直接读取B+树,非常快

3、复杂查询(多表+多条件)

Python列表(分钟级)加载全部数据到内存,且算法复杂

Pandas(十秒级)加载全部数据到内存,可以算法优化,但也不快

Mysql(秒级)通过索引和join方法优化,非常快

所以结论如下:

  • Python列表:适合万级以下小规模数据的处理

  • Pandas:适合百万左右中等数据规模的处理

  • Mysql:适合千万以上大规模数据的处理

对了,其实你在Python中可以使用mysql的,有一个专门的sdk接口-pymysql,可以支持python连接mysql,不管是查询、建表、插入数据等都可以实现。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

朱卫军 AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值