时间序列建模的时间戳与时序特征衍生思路

4c0d64c5c141f3ba7ba68b85237eeb88.png

今日锦囊

特征锦囊:时间序列建模的时间戳与时序特征衍生思路

时间序列模型在我们日常工作中应用的场景还是会很多的,比如我们去预测未来的销售单量、预测股票价格、预测期货走势、预测酒店入住等等,这也是我们必须要掌握时序建模的原因。而关于时间戳以及时序值的特征衍生,在建模过程中起到的作用是十分巨大的!之前写过一篇关于日期特征操作的文章——《关于日期特征,你想知道操作都在这儿~》,可以先回顾下,里面有关于日期特征的基础操作手法。

🚅 Index

01 时间序列数据类别简介
02 时间戳的衍生思路
03 时间戳的衍生代码分享
04 时序值的衍生思路
05 时序值的衍生代码分享

🏆 01 时间序列数据类别简介

我们就拿经典的时间序列模型来说一下,一般来说数据集里的数据,可以分为3大类。
1)Y值:我们也称之为时序值。如下表中的销量字段;
2)时间戳:标记本条记录发生时间的字段,如下表中的统计日期字段。oh,对了如果不是单时间序列的,比如数据集中记录的是多家店铺的时序数据,需要结合序列属性信息,比如店铺名称、店铺所在城市;
3)其他字段:顾名思义。
e1d830293d4e28c31255703adfcae85b.png而我们今天关注的是时间戳和时序值的特征衍生。

🏆 02 时间戳的衍生思路

虽然时间戳就只有1个字段,但里面其实包含的信息量还是很多的,一般来说我们可以从下面几个角度来拆解,衍生出一系列的变量。
1)时间戳本身特征
直接使用Pandas的series提取时间戳特征,比如说哪年、哪季度、哪月、哪周、哪日、哪时、哪分、哪秒、年里的第几天、月里的第几天、周里的第几天。
2)0-1特征
一般是与真实场景结合来用,比如说工作日、周末、公众假日(春节、端午节、中秋节等)、X初、X中、X末(X代表年、季度、月、周)、特殊节日(如运营暂停、服务暂停)、日常习惯叫法(如清晨、上午、中午、下午、傍晚、夜晚、深夜、凌晨),从而可以衍生出:

  • 是否工作日

  • 是否春节

  • 是否月初

  • 是否服务期外

  • 是否凌晨

  • 等等等等

3)时间差特征
一般也是与真实场景结合来用,比如说工作日、周末等等,比如:

  • 距离春节还有N天

  • 距离周末还有N天

  • 举例下月初还有N天

  • 等等等等

🏆 03 时间戳的衍生代码分享

首先我们捏造一些数据,用来测试代码。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值