今日锦囊
特征锦囊:时间序列建模的时间戳与时序特征衍生思路
时间序列模型在我们日常工作中应用的场景还是会很多的,比如我们去预测未来的销售单量、预测股票价格、预测期货走势、预测酒店入住等等,这也是我们必须要掌握时序建模的原因。而关于时间戳以及时序值的特征衍生,在建模过程中起到的作用是十分巨大的!之前写过一篇关于日期特征操作的文章——《关于日期特征,你想知道操作都在这儿~》,可以先回顾下,里面有关于日期特征的基础操作手法。
🚅 Index
01 时间序列数据类别简介
02 时间戳的衍生思路
03 时间戳的衍生代码分享
04 时序值的衍生思路
05 时序值的衍生代码分享
🏆 01 时间序列数据类别简介
我们就拿经典的时间序列模型来说一下,一般来说数据集里的数据,可以分为3大类。
1)Y值:我们也称之为时序值。如下表中的销量
字段;
2)时间戳:标记本条记录发生时间的字段,如下表中的统计日期
字段。oh,对了如果不是单时间序列的,比如数据集中记录的是多家店铺的时序数据,需要结合序列属性信息,比如店铺名称、店铺所在城市;
3)其他字段:顾名思义。而我们今天关注的是时间戳和时序值的特征衍生。
🏆 02 时间戳的衍生思路
虽然时间戳就只有1个字段,但里面其实包含的信息量还是很多的,一般来说我们可以从下面几个角度来拆解,衍生出一系列的变量。
1)时间戳本身特征
直接使用Pandas的series提取时间戳特征,比如说哪年、哪季度、哪月、哪周、哪日、哪时、哪分、哪秒、年里的第几天、月里的第几天、周里的第几天。
2)0-1特征
一般是与真实场景结合来用,比如说工作日、周末、公众假日(春节、端午节、中秋节等)、X初、X中、X末(X代表年、季度、月、周)、特殊节日(如运营暂停、服务暂停)、日常习惯叫法(如清晨、上午、中午、下午、傍晚、夜晚、深夜、凌晨),从而可以衍生出:
是否工作日
是否春节
是否月初
是否服务期外
是否凌晨
等等等等
3)时间差特征
一般也是与真实场景结合来用,比如说工作日、周末等等,比如:
距离春节还有N天
距离周末还有N天
举例下月初还有N天
等等等等
🏆 03 时间戳的衍生代码分享
首先我们捏造一些数据,用来测试代码。
#