百川大模型(LLM)配置流程,零基础入门到精通,收藏这篇就够了

一、服务器配置

服务器

1

CPU

8C

2

内存

16G

3

硬盘

100G

4

显卡

显存8G以上(NVIDIA)

5

系统

Linux(Ubuntu20.04)

二、模型配置流程

1、NVIDIA显卡驱动安装

# 查看显卡硬件型号``sudo ubuntu-drivers list   #查询推荐显卡驱动版本``sudo apt-get install nvidia-driver-535 ## 535是驱动版本,根据显示的版本进行选择,建议选择最新版本``sudo apt-get update``# 重启服务器``sudo reboot``# 查看显卡驱动是否安装成功``nvidia-smi``# 如果显示类似以下内容证明驱动安装完成``Wed Sep 27 13:06:45 2023`       `+---------------------------------------------------------------------------------------+``| NVIDIA-SMI 535.86.05              Driver Version: 535.86.05    CUDA Version: 12.2     |``|-----------------------------------------+----------------------+----------------------+``| GPU  Name                 Persistence-M | Bus-Id        Disp.A | Volatile Uncorr. ECC |``| Fan  Temp   Perf          Pwr:Usage/Cap |         Memory-Usage | GPU-Util  Compute M. |``|                                         |                      |               MIG M. |``|=========================================+======================+======================|``|   0  NVIDIA GeForce RTX 3080        Off | 00000000:01:00.0 Off |                  N/A |``| 51%   64C    P2             104W / 320W |   8485MiB / 10240MiB |      5%      Default |``|                                         |                      |                  N/A |``+-----------------------------------------+----------------------+----------------------+`                                                                                         `+---------------------------------------------------------------------------------------+``| Processes:                                                                            |``|  GPU   GI   CI        PID   Type   Process name                            GPU Memory |``|        ID   ID                                                             Usage      |``|=======================================================================================|``|    0   N/A  N/A       947      G   /usr/lib/xorg/Xorg                            9MiB |``|    0   N/A  N/A      1461      G   /usr/bin/gnome-shell                          4MiB |``+---------------------------------------------------------------------------------------+

2、docker安装

# 安装docker``sudo apt-get install docker.io``# docker命令免root权限执行``# 创建docker用户组,若已有docker组会报错,没关系可忽略` `sudo groupadd docker``# 将当前用户加入docker组``sudo gpasswd -a ${USER} docker``# 重启docker服务``sudo service docker restart``# 切换当前会话到新group或重新登录重启会话``newgrp docker

3、镜像下载

# wget http://请飞书联系常瑞明.发你

4、镜像加载

# 进入镜像存放的目录,执行下面命令将镜像加载到服务器``# CPU版本``cat dl_7b_chat_cpu_v1.0.tar | docker load``cat dl_13b_chat_cpu_v1.0.tar | docker load``   ``# GPU版本``cat dl_7b_chat_gpu_v1.0.tar | docker load``cat dl_7b_chat_4bits_gpu_v1.0.tar | docker load``cat dl_13b_chat_gpu_v1.0.tar | docker load``cat dl_13b_chat_4bits_gpu_v1.0.tar | docker load

5、镜像容器生成

# 通过进行生成容器``# CPU版本:7B占用内存15G左右,13B占用内存60G左右``docker run -it --privileged=true -p 7333:7333 --name=dl_7b_chat_gpu_v1 e310d8d975f5 gunicorn api:app -c conf.py --bind=0.0.0.0:7333``docker run -it --privileged=true -p 7333:7333 --name=dl_13b_chat_gpu_v1 2fe7dd3f4f9e gunicorn api:app -c conf.py --bind=0.0.0.0:7333``   ``# GPU版本:7B显存占用16G左右,7B-4Bits显存占用8G左右,13B显存占用34G左右,13B-4Bits显存占用16G左右``# --gpus all命令是将全部显卡与容器进行连接,指定特定显卡:--gpus '"device=0"'(0代表第一张显卡,通过nvidia-smi可以查看显卡编号)``docker run --ipc=host --gpus '"device=0"' -it -p 7333:7333 --name=dl_7b_chat_gpu_v1 4ba88965ca92 gunicorn api:app -c conf.py --bind=0.0.0.0:7333``docker run --ipc=host --gpus '"device=0"' -it -p 7333:7333 --name=dl_7b_chat_4bits_gpu_v1 66bf63aa7eff gunicorn api:app -c conf.py --bind=0.0.0.0:7333``docker run --ipc=host --gpus '"device=0"' -it -p 7333:7333 --name=dl_13b_chat_gpu_v1 39c426074bc0 gunicorn api:app -c conf.py --bind=0.0.0.0:7333``docker run --ipc=host --gpus '"device=0"' -it -p 7333:7333 --name=dl_13b_chat_4bits_gpu_v1 5377a65506e8 gunicorn api:app -c conf.py --bind=0.0.0.0:7333
  

6、测试接口

# -*- coding: utf-8 -*-``"""``@author  :chang``@date    :2024年01月30日 15:37:14``@file    :chat_client.py``@IDE     :PyCharm` `@content :百川大模型接口调用``"""``import requests``import json``   ``   ``if __name__ == '__main__':`    `request_url = 'http://ip:port/inference/'`    `params = {"content": "你叫什么"}`    `headers = {'content-type': 'application/x-www-form-urlencoded'}`    `result = requests.post(request_url, data=params, headers=headers)`    `if result.status_code == 200:`        `json_obj = json.loads(result.content.decode('utf-8'))`        `print(json_obj)`    `else:`        `print(f"Request failed with status code: {result}")

AI大模型学习福利

作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

一、全套AGI大模型学习路线

AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!

img
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

二、640套AI大模型报告合集

这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。

img

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

三、AI大模型经典PDF籍

随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。

img
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

四、AI大模型商业化落地方案

img

因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取

2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享

作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值