一、服务器配置
服务器 | ||
1 | CPU | 8C |
2 | 内存 | 16G |
3 | 硬盘 | 100G |
4 | 显卡 | 显存8G以上(NVIDIA) |
5 | 系统 | Linux(Ubuntu20.04) |
二、模型配置流程
1、NVIDIA显卡驱动安装
# 查看显卡硬件型号``sudo ubuntu-drivers list #查询推荐显卡驱动版本``sudo apt-get install nvidia-driver-535 ## 535是驱动版本,根据显示的版本进行选择,建议选择最新版本``sudo apt-get update``# 重启服务器``sudo reboot``# 查看显卡驱动是否安装成功``nvidia-smi``# 如果显示类似以下内容证明驱动安装完成``Wed Sep 27 13:06:45 2023` `+---------------------------------------------------------------------------------------+``| NVIDIA-SMI 535.86.05 Driver Version: 535.86.05 CUDA Version: 12.2 |``|-----------------------------------------+----------------------+----------------------+``| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |``| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |``| | | MIG M. |``|=========================================+======================+======================|``| 0 NVIDIA GeForce RTX 3080 Off | 00000000:01:00.0 Off | N/A |``| 51% 64C P2 104W / 320W | 8485MiB / 10240MiB | 5% Default |``| | | N/A |``+-----------------------------------------+----------------------+----------------------+` `+---------------------------------------------------------------------------------------+``| Processes: |``| GPU GI CI PID Type Process name GPU Memory |``| ID ID Usage |``|=======================================================================================|``| 0 N/A N/A 947 G /usr/lib/xorg/Xorg 9MiB |``| 0 N/A N/A 1461 G /usr/bin/gnome-shell 4MiB |``+---------------------------------------------------------------------------------------+
2、docker安装
# 安装docker``sudo apt-get install docker.io``# docker命令免root权限执行``# 创建docker用户组,若已有docker组会报错,没关系可忽略` `sudo groupadd docker``# 将当前用户加入docker组``sudo gpasswd -a ${USER} docker``# 重启docker服务``sudo service docker restart``# 切换当前会话到新group或重新登录重启会话``newgrp docker
3、镜像下载
# wget http://请飞书联系常瑞明.发你
4、镜像加载
# 进入镜像存放的目录,执行下面命令将镜像加载到服务器``# CPU版本``cat dl_7b_chat_cpu_v1.0.tar | docker load``cat dl_13b_chat_cpu_v1.0.tar | docker load`` ``# GPU版本``cat dl_7b_chat_gpu_v1.0.tar | docker load``cat dl_7b_chat_4bits_gpu_v1.0.tar | docker load``cat dl_13b_chat_gpu_v1.0.tar | docker load``cat dl_13b_chat_4bits_gpu_v1.0.tar | docker load
5、镜像容器生成
# 通过进行生成容器``# CPU版本:7B占用内存15G左右,13B占用内存60G左右``docker run -it --privileged=true -p 7333:7333 --name=dl_7b_chat_gpu_v1 e310d8d975f5 gunicorn api:app -c conf.py --bind=0.0.0.0:7333``docker run -it --privileged=true -p 7333:7333 --name=dl_13b_chat_gpu_v1 2fe7dd3f4f9e gunicorn api:app -c conf.py --bind=0.0.0.0:7333`` ``# GPU版本:7B显存占用16G左右,7B-4Bits显存占用8G左右,13B显存占用34G左右,13B-4Bits显存占用16G左右``# --gpus all命令是将全部显卡与容器进行连接,指定特定显卡:--gpus '"device=0"'(0代表第一张显卡,通过nvidia-smi可以查看显卡编号)``docker run --ipc=host --gpus '"device=0"' -it -p 7333:7333 --name=dl_7b_chat_gpu_v1 4ba88965ca92 gunicorn api:app -c conf.py --bind=0.0.0.0:7333``docker run --ipc=host --gpus '"device=0"' -it -p 7333:7333 --name=dl_7b_chat_4bits_gpu_v1 66bf63aa7eff gunicorn api:app -c conf.py --bind=0.0.0.0:7333``docker run --ipc=host --gpus '"device=0"' -it -p 7333:7333 --name=dl_13b_chat_gpu_v1 39c426074bc0 gunicorn api:app -c conf.py --bind=0.0.0.0:7333``docker run --ipc=host --gpus '"device=0"' -it -p 7333:7333 --name=dl_13b_chat_4bits_gpu_v1 5377a65506e8 gunicorn api:app -c conf.py --bind=0.0.0.0:7333
6、测试接口
# -*- coding: utf-8 -*-``"""``@author :chang``@date :2024年01月30日 15:37:14``@file :chat_client.py``@IDE :PyCharm` `@content :百川大模型接口调用``"""``import requests``import json`` `` ``if __name__ == '__main__':` `request_url = 'http://ip:port/inference/'` `params = {"content": "你叫什么"}` `headers = {'content-type': 'application/x-www-form-urlencoded'}` `result = requests.post(request_url, data=params, headers=headers)` `if result.status_code == 200:` `json_obj = json.loads(result.content.decode('utf-8'))` `print(json_obj)` `else:` `print(f"Request failed with status code: {result}")
AI大模型学习福利
作为一名热心肠的互联网老兵,我决定把宝贵的AI知识分享给大家。 至于能学习到多少就看你的学习毅力和能力了 。我已将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
一、全套AGI大模型学习路线
AI大模型时代的学习之旅:从基础到前沿,掌握人工智能的核心技能!
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
二、640套AI大模型报告合集
这套包含640份报告的合集,涵盖了AI大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
三、AI大模型经典PDF籍
随着人工智能技术的飞速发展,AI大模型已经成为了当今科技领域的一大热点。这些大型预训练模型,如GPT-3、BERT、XLNet等,以其强大的语言理解和生成能力,正在改变我们对人工智能的认识。 那以下这些PDF籍就是非常不错的学习资源。
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
四、AI大模型商业化落地方案
因篇幅有限,仅展示部分资料,需要点击下方链接即可前往获取
2024最新版CSDN大礼包:《AGI大模型学习资源包》免费分享
作为普通人,入局大模型时代需要持续学习和实践,不断提高自己的技能和认知水平,同时也需要有责任感和伦理意识,为人工智能的健康发展贡献力量。