用 Python 机器学习预测黄金价格

本文介绍如何利用Python进行机器学习,通过构建线性回归模型预测黄金ETF(GLD)的价格。通过计算过去3天和9天的移动平均线作为解释变量,建立模型并进行训练、测试,结果显示模型的R平方达到99.21%,具有很好的预测能力。此外,还展示了策略的累积收益和夏普比率,评估了模型的表现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

读取黄金 ETF 数据

本文使用机器学习方法来预测最重要的贵金属之一黄金的价格。我们将创建一个线性回归模型,该模型从过去的黄金 ETF (GLD) 价格中获取信息,并返回对第二天黄金 ETF 价格的预测。GLD是直接投资实物黄金的最大ETF。(扫描本文最下方二维码获取全部完整源码和Jupyter Notebook 文件打包下载。)

首先要做的是:导入所有必要库。

# LinearRegression 是一个用于线性回归的机器学习库  
from sklearn.linear_model import LinearRegression  
# pandas 和 numpy 用于数据操作  
import pandas as pd  
import numpy as np  
# matplotlib 和 seaborn 用于绘制图形  
import matplotlib.pyplot as plt  
%matplotlib inline  
plt.style.use('seaborn-darkgrid')  
# yahoo Finance用于获取数据  
import yfinance as yf 

然后,我们读取过去 12 年的每日黄金 ETF 价格数据并将其存储在 Df 中。我们删除不相关的列并使用 dropna() 函数删除 NaN 值。然后,我们绘制黄金 ETF 收盘价。

Df = yf.download('GLD', '2008-01-01', '2020-6-22', auto_adjust=True)  
DfDf = Df[['Close']]  
DfDf = Df.dropna()  
Df.Close.plot(figsize=(10, 7),color='r')  
plt.ylabel("Gold ETF Prices")  
plt.title("Gold ETF Price Series")  
plt.show() 

定义解释变量

解释变量是一个被操纵以确定第二天

### 构建黄金价格预测模型 #### 数据准备 为了构建有效的随机森林模型,数据集的质量至关重要。对于黄金价格预测,通常会收集历史价格、宏观经济指标和其他可能影响金价的因素作为特征变量[^3]。 ```python import pandas as pd from sklearn.model_selection import train_test_split # 假设已经有一个DataFrame df包含了日期索引以及各种特征列和目标列'price' df = pd.read_csv('gold_prices.csv', parse_dates=['date'], index_col='date') # 特征选择 features = ['feature_1', 'feature_2'] # 替换为实际使用的特征名称 X = df[features].values y = df['price'].values # 划分训练集与测试集 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) ``` #### 模型建立 使用 `sklearn` 库中的 `RandomForestRegressor` 类来创建并配置随机森林回归模型。通过调整超参数如树的数量 (`n_estimators`) 和每棵树的最大深度 (`max_depth`) 来优化性能[^1]。 ```python from sklearn.ensemble import RandomForestRegressor model = RandomForestRegressor(n_estimators=100, max_depth=None, min_samples_split=2, random_state=42) # 训练模型 model.fit(X_train, y_train) ``` #### 预测与评估 完成训练后,可以利用该模型对未来的价格做出预测,并对比真实值来进行误差分析。这里采用均方根误差 (RMSE) 作为一种衡量标准[^2]。 ```python from sklearn.metrics import mean_squared_error import numpy as np predictions = model.predict(X_test) rmse = np.sqrt(mean_squared_error(y_test, predictions)) print(f'The RMSE of the prediction is {rmse:.2f}') ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值