1 前言
随着电动车(EVs)变得更加流行,它们大规模融入电网带来了新的挑战和机遇。EV的充电行为对电网有着显著影响,因为它涉及大幅度的功率需求波动,影响电力系统的稳定性和经济效率[1]。EV充电需求通常具有高度随机性和波动性,特别是在高峰时段,需求激增可能导致电网超负荷,损害其稳定性[2]。此外,EV充电时间和容量的不确定性给电力系统规划和管理带来重大挑战。如果这些充电行为不能得到有效管理和协调,可能导致电网超负荷、运营成本增加,甚至导致停电[3]。因此,准确模拟和预测EV充电行为对于优化电力系统的运行和管理至关重要[4]。
目前,模拟电动车充电行为的主要方法包括统计分析、数据挖掘、随机建模和基于智能体的模型**。**统计分析利用统计技术来分解和分析电动车充电行为,通过识别趋势、周期性和其他模式[5]。虽然简单且易于解释,但在处理复杂和非线性行为时存在不足。数据挖掘技术,如聚类和深度学习,可以从大型数据集中提取和分析用户行为,展示出强大的数据处理能力[6]。然而,这些方法需要大量的计算资源和高质量的数据。随机模型,如马尔可夫链和Copula函数,被广泛使用来捕捉充电行为的随机性和变化性,有效处理不确定性,但涉及到对参数选择敏感的复杂数学模型[7]。近年来,基于智能体的方法在处理电动汽车充电行为的复杂性和动态性方面显示出显著优势。通过将个体用户或车辆建模为智能体,并模拟它们的相互作用和决策过程,这些方法可以研究整体行为[8]。然而,捕捉人类行为的复杂心理和偏好仍然具有挑战性。
随着大语言模型(LLM)和生成式智能体的出现,模拟电动汽车充电行为的方法正在发生转变。生成式智能体模型利用自然语言理解和生成能力,精细地模拟复杂的人类行为和决策过程。例如,Park等人引入了生成式智能体来模拟日常人类活动,展示了逼真的个人和社会行为[9]。Lyfe智能体整合LLM来模拟复杂的社会行为,实现成本效益高的实时响应[10]。这些智能体在多智能体系统中表现出自我激励和社会推理能力。因此,将基于LLM的生成式智能体模型应用于模拟电动汽车充电行为已经显示出巨大的潜力。
本文提出了一种用于模拟和分析电动车充电行为的生成式基于智能体的模型。该论文的主要贡献如下:
一种新型的生成式Agent-Based Model (GABM)框架,用于解决电动汽车充电行为中复杂的心理和偏好问题。
基于电力系统中的五个维度(场景、时间、空间、能源和价格)开发GABM框架。
2 问题描述和准备工作
A. 电动汽车充电行为模型
为了模拟和预测电动汽车(EV)的充电行为,提出了一种用于EV充电行为的生成式Agent-based模型。EV充电行为模型被定义为一个元组{a,o,t},表示其组成部分及其重要性,其中a表示行为类型,描述用户所采取的动作,o是行为作用的对象,t是指示行为发生时间的时间戳。
在EV充电行为的模拟中,目标是识别一个函数a = f(U, o, t)准确地表示EV的充电行为,其中U代表用户特征,o代表充电桩或站点,t代表时间。这个函数可以用以下方程表示:
a = f(U,o,t)
a代表行为类型,比如开始或停止充电,U代表用户特征,如充电习惯、车辆类型和电池容量,o代表充电桩或站点的特征,如位置、可用性和价格,t代表时间戳,表示行为发生的具体时间。
B. 基于LLM的智能体
一种基于LLM的智能体可以表示为一个五元组U = (L, O, M, A, R),其中L代表大型语言模型,O代表目标,M代表记忆,A表示动作,R代表重新思考。
LLM基于智能体的整合进EV充电行为模型具有潜力创建能够模拟复杂条件下行为的智能体。这些智能体将受益于适应性、解释性、零样本学习、常识推理和处理各种情况的能力。尽管具有这些优势,标准的LLM基于智能体框架可能不直接适用于电力用户行为建模。因此,需要设计一个精心制定的框架,使这些智能体能够在电力系统中执行复杂任务。
3 基于LLM的智能体框架设计用于EV
A 充电行为
基于LLM的智能体架构设计。智能体框架旨在有效地模拟和预测电动车(EV)充电行为。该框架包括七个关键组件:大型语言模型、角色、规划、记忆、感知、行动和反思。这些组件的整合允许全面建模和决策过程,考虑到电动车充电行为的复杂性和动态特性。
整体框架可以表示为一个函数 F,该函数将这些组件集成起来,以模拟电动汽车的充电行为:
A = f(L,C,P,M,S,A,R)
where在哪里:
lL代表大型语言模型。
lC代表人物。
lP 代表 规划.
lM 代表记忆。
lS代表感知。
lA 代表行动。
lR 代表反思。
1.大型语言模型(L):大型语言模型(LLM)是智能体的核心,负责自然语言理解和生成。LLM解释用户输入,生成真实行为模式,并模拟决策过程。
2.在基于LLM的电动汽车充电行为模拟中,Persona模块确定用户的偏好、个性和行为。通过设计各种人设,模型可以更好地反映不同用户群体的多样行为。
3.规划(P):规划定义了智能体人旨在实现的目标和任务,并生成包括工作、购物和休闲活动在内的日常活动时间表。这些计划影响了电动车的行驶里程和充电需求。
4.记忆(M):内存存储历史数据和上下文信息,包括过去的充电行为、用户偏好和环境因素。它使智能体能够基于以往的经验做出明智的决策。内存分为短期内存和长期内存,分别存储最近几天和较长时间内的充电行为数据。
5.感知(S): 感知收集并处理与电动汽车出行和充电相关的当前和预测信息,以提供数据支持。
6.行动(A): 行动代表了智能体可以采取的一系列可能行动,比如启动充电、停止充电、选择充电站以及调整充电速率。智能体根据当前状态和目标确定最佳行动。
7.反思(R):反思允许智能体评估其行动和结果。这一组成部分对于持续学习和适应至关重要,使智能体能够通过分析成功和失败来改善其表现。反思包括计划反思、用户满意度评估和人物形象反思,以优化未来的决策和行为。
B.框架维度
GABM框架通过五个维度运作,以确保全面和逼真的模拟:
图1. 基于LLM智能体框架概述
1.情景: 这个维度涵盖了各种充电场景,如家庭充电、工作场所充电、公共充电站和长途旅行。每种情景都具有影响充电行为的独特特征和约束。
2.时间: 时间维度包括诸如一天中的时间、一周中的天和季节等时间因素。充电行为可能会根据这些时间因素显著变化,从而影响电网负载和能源消耗模式。
3.空间: 空间维度考虑了充电站和用户的地理位置。因素包括到最近充电站的距离、站点可用性和地区电价。
4.能源: 这一维度关注电动汽车充电的能源方面,包括电池容量、充电状态、充电速度和能源效率。理解这些因素对于优化充电策略和管理电网负荷至关重要。
5.价格: 价格维度考虑了电力成本,包括分时电价、高峰定价以及非高峰充电的激励措施。经济因素显著影响用户决策和充电行为。
C. 智能体互动和决策过程
在这个框架内,智能体与彼此和环境互动,以模拟真实的充电行为。决策过程包括:
1.计划生成:智能体根据其个性生成当前目标,并制定具体计划,包括旅行计划和充电计划。
2.环境感知: 智能体收到来自环境的输入,包括行驶条件、车站可用性和价格信息。
3.记忆检索:智能体人从其记忆中检索相关的历史数据和环境信息,以指导其决策。
4.行动选择:基于LLM的解释和目标与记忆的评估,智能体选择最优动作。
5.行动评估:在执行完动作后,智能体评估结果并更新其记忆,利用反思组件来提高未来的表现。
这个过程确保智能体可以动态适应环境变化,做出最优决策,实现更高效稳定的电力系统管理。
4基于LLM的智能体框架实施
基于LLM的智能体框架用于模拟电动车充电行为的实现涉及对各个模块进行全面整合,以创建一个强大而动态的系统。每个模块在确保智能体能够准确预测和优化电动车充电过程中发挥关键作用,通过建模用户偏好、个性和行为。该框架的关键组成部分包括Persona(人物角色)、Planning(计划)、Perception(感知)、Memory(记忆)、Decision Making(决策制定)、Reflection(反思)、Action(行动)和Environment(环境)。以下是每个模块实施的详细描述。
图2.电动车充电行为模拟
A. 人设
基于LLM的智能体框架用于模拟电动汽车充电行为,用户档案决定用户的偏好、个性和行为。设计了不同角色扮演以更好地反映不同用户群体的多样行为。在电动汽车充电中考虑以下属性:
1.人口统计信息:包括用户年龄、性别、职业和其他因素。这些因素影响驾驶和充电行为。例如,年轻用户可能更愿意接受新技术,并更频繁地使用电动车和充电设施,而职业可能影响驾驶需求和充电时间。
2.经济条件:包括收入、资产和其他财务因素。这些因素影响用户的收费偏好。例如,经济条件较好的用户可能更愿意支付高价的快速充电服务。
3.心理信息:包括用户对电动汽车充电的感知、态度和意愿。这些细节可以影响充电行为和选择。
4.车辆信息:包括用户的车辆制造商、型号、年份和类型。这些细节影响充电行为,因为不同车辆具有不同的电池容量和充电需求。例如,具有较大电池容量的电动车可能需要更长的充电时间或更高功率的充电站。
5.**充电习惯:**包括用户充电频率、次数和选择充电地点。这些细节影响用户的充电行为和充电站的使用情况。
B. 计划
规划模块负责生成每日活动、出行和充电计划,以优化电动车使用效率。
1.**活动规划:**智能体根据其角色生成每日活动时间表,如工作、购物和休闲活动。这些事件可能会影响电动汽车的行驶里程和充电需求。
2.旅行规划:根据活动规划,智能体商制定旅行计划,确定旅行时间和距离。
3.充电规划:智能体根据出行计划和电动汽车的电池状态制定充电计划。
C. 感知
感知模块收集和处理与电动汽车旅行和充电相关的当前和预测信息,以支持高效的充电决策。
-
旅行感知:负责收集和处理与电动汽车旅行相关的信息,为充电计划提供数据支持。
-
情境: 当前和预测的交通状况。
-
时间:当前时间和计划旅行时间。
-
空间: 当前车辆位置和距旅行目的地的距离。
-
能量: 当前车辆电池电量。
-
充电站感知:涉及收集和分析各种信息,以支持高效的电动车充电决策。
-
情景:可用充电器的数量和运行状态。
-
时间:总充电时间,包括前往充电站的旅行时间、排队时间和实际充电持续时间。
-
空间: 充电站的地理位置以及它们与车辆当前位置和行驶路线的距离。
-
能源:充电站提供的充电速度,包括快速充电和标准选项,这将影响总充电时间。
-
价格:在各个站点进行收费。
D. 记忆
记忆模块负责存储和管理充电行为数据,以支持智能体的决策和优化。
1.短期记忆: 存储过去三天的充电行为数据,包括充电场景、充电时间、充电站点、充电量、充电功率和充电价格。
2.长期记忆:存储过去七天的充电行为数据,包括充电次数、充电站点、充电量、充电功率和充电价格。这些数据帮助智能体分析用户的充电习惯和长期趋势,促进更好的行为规划和决策制定。
E. 决策制定
决策模块根据用户角色、计划、记忆和感知信息做出合理决策。决策结果包括充电决策、充电方案、充电时间、充电站、充电量、充电功率和充电价格。
F. 反思
反思模块有助于智能体改善决策并优化未来的充电行为。它包括以下组成部分:
1.计划反思: 智能体评估决策是否符合用户需求和期望。
2.用户满意度:智能体评估用户对充电决策的满意度,包括充电时间、充电站选址、充电量、充电功率和充电价格。
3.Persona Reflection: 智能体人评估决策与用户行为和心理模式的一致性。这涉及分析用户和充电行为,考虑人类决策过程中固有的确定性规则和随机性。
G. 行动
在模拟电动汽车充电行为时,动作模块使智能体能够通过特定的行动与环境进行交互。这些行动受电力消耗行为的五元组指导,如充电决策、充电场景、充电时间、充电站、充电量、充电功率和充电价格。
H. 环境
模拟环境模块旨在模拟电动汽车用户的充电行为及其对电动汽车和充电站的影响。agent可以感知自己的状态以及充电设备的状态,并通过一系列行动与环境进行交互。
1.Electric Vehicles: 模拟电动汽车在现实世界中的运行,着重关注能源消耗、运行效率、运行期间电池状态以及充电时的功率和速度。
2.充电站:模拟电动汽车充电过程,考虑充电站的位置、充电成本、充电桩数量和可用性,以及排队和充电功率。
3.地理信息: 整合地理信息系统(GIS)数据,包括充电站位置、道路网络、交通状况和区域电价等信息。地理信息有助于智能体更准确地规划路线和选择充电站,优化充电决策和旅行路线。
5 模拟与结果
A. 模拟设置
在这项研究中,我们利用中国上海的环境作为模拟模型,模拟了10名出租车司机在7天内的充电行为。每辆电动车的电池容量为60kWh(总容量为75kWh)。具体的模拟设置如下:
1用户信息生成: LLM生成出租车司机的个人信息、心理特征、电动车信息和充电习惯。
2.根据上海的出租车司机的日常工作数据,LLM生成类似的工作计划并将其存储在数据库中,作为LLM的记忆。
3.使用Amap API进行距离计算和充电站信息检索:计算两个位置之间的距离,并获取附近充电站的信息。假设所有充电站均可用的情况下,将这些数据与数据库匹配。
图3. 电动汽车充电行为模拟可视化
4.动态决策: 在每次事件结束时,计算车辆的功耗,并做出充电决策。相关信息提供给LLM,使其能够根据用户的配置做出决策。这些决策随后将存储在数据库中。
5.每日反思: 每天凌晨12:00,LLM评估当天所做出的决策是否准确地满足了用户的需求和期望,评估用户对充电决策的满意度,并评估决策的成本效益。反思结果存储在数据库中。
B. 模拟可视化
为了可视化模拟操作,我们提供了一幅地图,显示了上海10名出租车司机的路线、起点和终点,以及充电站的位置。每位司机的路线用线标示,充电站用特定图标标注。该地图提供了模拟环境和电动车运动模式的详细概述。在可视化界面的右侧,我们显示了个别司机的充电决策,包括时间、充电原因和选择的充电站。
1.Lines: 代表了模拟期间10名出租车司机所走的路线。
2.图标:指示可供驾驶员使用的充电站的位置。
3.起点和终点:在地图上标记,以显示每位司机的行程起点和终点。
4.决策详情:右侧显示了每位司机的充电决策,包括充电时间、充电原因和选择的充电站。
这幅地图有助于说明模拟的实际方面,包括出租车行驶的距离、它们使用的充电站的位置,以及模拟在上海城市环境中的总体布局。决策详细信息提供了对每个充电决策背后的理由的洞察,增进了人们对模拟如何在现实环境中运作的理解,并突显了电动车充电行为的动态。这种详细的可视化和描述增进了对模拟操作的理解,展示了出租车的地理移动和每位司机的决策过程。
6 总结
这项研究介绍了一种基于LLM的智能体框架,用于模拟电动汽车充电行为,整合用户偏好、心理特征和环境因素,以优化充电过程。在中国上海进行的实验中,对10名出租车司机在7天内的模拟表明,该框架在生成个性化用户配置文件、规划日常活动和做出明智、适应性决策方面的有效性。智能体的动态决策,支持持续反思和记忆更新,确保与用户期望保持一致并优化效率。出租车路线、充电站和充电决策的详细可视化突显了该框架在城市环境中的实际适用性。这种稳健、创新的方法为改善电动汽车充电基础设施管理提供了宝贵的见解,未来的研究将重点放在将更复杂的情景和额外的数据源纳入,以增强预测精度和实际应用。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。