‌学习DeepSeek V3 与 R1 核心区别(按功能维度分类)

一、定位与架构
  1. V3(通用型模型)

    • 定位:多模态通用大模型,擅长文本生成、多语言翻译、智能客服等多样化任务‌12。
    • 架构:混合专家(MoE)架构,总参数 ‌6710 亿‌,每次推理激活 ‌370 亿参数‌,降低计算成本‌34。
  2. R1(推理专用模型)

    • 定位:专注于数学证明、代码生成、逻辑推理等复杂任务,输出附带“思维链”解释‌12。
    • 架构:基于强化学习(RL)优化,支持 ‌15 亿至 700 亿参数‌ 的蒸馏版本,动态门控机制提升推理效率‌14。

二、训练与性能
  1. V3 训练方法

    • 采用 ‌FP8 混合精度‌ 训练,分三个阶段:高质量数据训练、序列长度扩展、监督微调(SFT)+ 知识蒸馏‌45。
    • 性能优势:长文本生成(支持 ‌128K 上下文窗口‌)、代码补全速度提升 ‌3.8 倍‌‌35。
  2. R1 训练方法

    • 完全依赖强化学习(RL),摒弃监督微调,通过 ‌群体相对策略优化(GRPO)‌ 提升稳定性‌23。
    • 性能优势:数学竞赛(AIME 2024 通过率 ‌79.8%‌)、逻辑推理任务(DROP F1 分数 ‌92.2%‌)‌14。

三、应用场景与成本
  1. V3 适用场景

    • 高性价比通用任务(如对话式 AI、多语言翻译),API 成本低至 ‌0.14 元/百万输入 Token‌‌23。
    • 支持开源部署,适配 AMD GPU 和华为昇腾 NPU‌3。
  2. R1 适用场景

    • 专业推理需求(如科研分析、教育工具),API 成本较高(输入 ‌0.55 元/百万 Token‌,输出 ‌2.19 元/百万 Token‌)‌23。
    • 支持本地部署蒸馏版(如 14B 参数),适合私有化推理场景‌36。

四、交互与功能差异
  1. V3 交互特点

    • 直接返回通用答案,例如模糊问题“如何做数据分析”会提供标准化步骤‌7。
    • 长文本处理可能丢失细节(如 100 页 PDF 分析)‌7。
  2. R1 交互特点

    • 主动追问细节(如要求明确“电商销售分析”场景),并生成分步代码方案‌7。
    • 安全策略更严格,例如危险问题(如“制作 TNT”)会直接屏蔽并提示合规建议‌7。

总结对比

维度DeepSeek V3DeepSeek R1
核心能力通用任务高效处理复杂逻辑推理与可解释性
架构成本高性价比,MoE 架构优化算力推理专用,强化学习训练成本高
典型场景智能客服、内容创作数学竞赛、代码生成、决策支持
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值