基于RAG技术搭建本地知识库问答助手,已经是相当普遍的应用方案了。前一阵我在公司实践过,用我们过往积累的、对业务重要的内部知识构建知识库,开发了一个智能问答Agent,能减少团队一部分的答疑时间。
基于RAG技术搭建本地知识库问答助手,已经是相当普遍的应用方案了。前一阵我在公司实践过,用我们过往积累的、对业务重要的内部知识构建知识库,开发了一个智能问答Agent,能减少团队一部分的答疑时间。
构建知识库时,我们将内部知识整理成了 MarkDown 格式。至于为什么用MarkDown 格式,我简单总结了几个原因。
首先,一个文件最终要分块Embedding,而 MarkDown 格式天然支持标题分级,便于按章节分块(chunking),保证分块语义的完整性,提高后续内容召回的准确率。
图片
其次,知识库的内容需要让大模型理解,而大模型对 MarkDown 这种结构化的内容理解更好。这也是用 MarkDown 编写 prompt 成为主流的原因。
对我们个人来说,工作、学习中有很多场景,需要搭建个人知识库助手。比如,阅读新论文、阅读技术文档做分享等等。
在这些场景中,我们拿到的原始文档格式大都是 PDF 格式的,比如,下面的这个。
图片
我们面临的第一个问题是,如何准确地提取这些内容。
最容易想到的方案是找个 Python 库解析,如:PyPDF2。下面是我解析的结果。
图片
明显发现有三个问题,1、所有文本堆在一起没有格式, 2、文本识别不准,多个单词连在一起, 3、图片丢了。
这样的内容,如果直接作为 RAG 知识库,准确率会非常差。
幸好,最近发现一个能准确提取PDF内容的工具——Doc2X。
图片
可以说是我用过的工具中最准确的了,还是上面那个PDF文档,来看下 Doc2X 识别的结果。
图片
左边是原始PDF文档,右边是 Doc2X 提取的 MarkDown 格式文档。有标题结构,内容准确,有配图,可以说两边一模一样。
这样的内容,你才敢放心地导出,去构建RAG知识库。
Doc2X 支持多种格式导出,包括 Markdown、LaTeX、HTML、Word 等。
图片
下面是我导出的 MarkDown 格式文件。
图片
我们平时阅读论文、技术文档,难免遇到大量的表格、数学公式,Doc2X 对这部分做了深度优化,能实现⾼精度的识别与结构化转换。
图片
甚至如果你下载了一些来路不明的文档,比如,里面都是扫描件,根本没办法直接从PDF文件中直接复制文本,Doc2X 依然可以准确提取。
图片
对于我们搞技术的来说,有这么好用的工具,能写程序自动调用才是正道,Doc2X 也提供了开放平台。
图片
有了 API 就能调用接口自动提取PDF内容,然后构建知识库,开发智能体。
不想写代码也没关系,Doc2X 接⼊了 FastGPT、CherryStudio、扣⼦等平台,可以零代码创建智能体。
在扣子上使用 Doc2x 搭建文档阅读Agent,仅仅只需1步,添加 Doc2X 插件,填入开放平台创建的 API Key 即可。
图片
图片
当然,现在很多AI大模型产品也支持上传PDF文件进行问答。但 Doc2X 的优势在于,是专业做文档提取的,准确度更高。
并且不像其他产品上传文件后,解析的结果对我们是黑盒,Doc2X 提取后结果对我们可见,我们可以对结果做干预,生成的内容更可控。
如何学习大模型?
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!
这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
100套AI大模型商业化落地方案
大模型全套视频教程
200本大模型PDF书籍
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
LLM面试题合集
大模型产品经理资源合集
大模型项目实战合集
😝有需要的小伙伴,可以扫描下方二v码免费领取【保证100%免费】🆓