Coze智能体本地部署保姆级教程

相信玩AI的都知道智能体这玩意吧,Coze(扣子)基本是国内最大的智能体搭建平台了,但我最近刷自媒体总会听到有博主说Coze和智能体就不搭边,纯粹就是人为搭建起来的工作流。

但在我看来,目前AI的发展想要实现智能体的能力,只有通过人为去构建工作流,只要能把目的达到,管他是智能体还是工作流对吧?

有可能以后AI agent可以自己去搭建工作流,但至少目前为止还需要人为去搭建。

所以这才有了扣子、N8N、Dify等工作流平台大力发展的机会。

而现在,Coze智能体开源了!

项目遵循Apache2.0开源协议,要是不了解我们协议什么意思可以问问DeepSeek 

今天就手把手带你们本地部署Coze! 

1.环境要求

项目要求运行在Docker里,简单来说:Docker 是一个开源平台,用于 自动化部署、运行和管理应用程序 ,它将应用程序及其所有依赖项打包在一个独立的、可移植的容器中。

 

网址:docs.docker.com/desktop/set…

博主的操作系统是Windows,全文就以Windows为例,

来到网址后点击红框下载doker,然后安装到电脑上就ok了。

2.克隆项目

网址:github.com/coze-dev/co…

来到项目地址。

如果你有git,可以通过git命令把项目复制到本地,如果没有

 

你可以通过下载 ZIP压缩包,然后解压到本地,不管是通过git还是下载压缩包,都可以得到如图的文件。

 

3.配置模型

Coze Studio 是基于大语言模型的 AI 应用开发平台,首次部署并启动 Coze Studio 开源版之前,我我们需要先在 Coze Studio 项目里配置模型服务,否则创建智能体或者工作流时,无法正常选择模型。 本文档以火山方舟模型为例,演示如何为 Coze Studio 配置模型服务。如果你准备使用 OpenAI 等其他在线模型服务,应参考模型配置文档正确填写配置文件。

说得简单一点我们就是需要先配置一下大模型,不然没法工作。

3.1复制大模型配置文件

\coze-studio\backend\conf\model\template,

我们来到这个目录,可以看到coze帮我们内置了很多大模型的模板配置,像豆包、deepseek、chatgpt等等都可以,为了演示,我们这里选择doubao1.6模型。

复制红框文件,然后粘贴到上级目录

 

利用编辑器打开这个文件,如果你没有代码编辑器,你可以用记事本打开这个文件。

设置 idmeta.conn_config.api_keymeta.conn_config.model 字段,并保存文件

id:Coze Studio 中的模型 ID,由开发者自行定义,必须是非 0 的整数,且全局唯一。

api_key:在线模型服务的 API Key,在本示例中为火山方舟的 API Key。

model:在线模型服务的 model ID,在本示例中为火山方舟 doubao-seed-1.6 模型接入点的 Endpoint ID。

3.2api_key获取方法:

地址:console.volcengine.com/auth/login

首先我们需要登录火山平台

登录后点击右上角控制台

 

然后点击左边方框进入火山方舟

 

进入后点击API key 管理

然后创建 APIkey

 

 

得到API key后复制粘贴到刚才文件api的位置。

 

 

3.3Endpoint ID获取方法:

也是在火山方舟这,点击在线推理、自定义推理接入点、创建推理接入点

然后填上相关信息,

 

在选模型的时候需要实名认证,按照指引认证就行了,模型就选择第一个就好。

 

最后点击开通模型并接入。

 

再回到我们这个页面

 

红框里就是我们的Endpoint ID了,复制后粘贴到model ID这里就行了! 

 

4.部署启动

4.1创建环境文件

我们来到如图这个目录,\coze-studio\docker,先右键复制.env.example

 

然后粘贴 

 

把文件重命名为.env 

 

要注意是.env 

 

点击是,文件就创建好了 

 

4.2部署启动

在当前文件输入cmd启动命令台

 

在命令台输入:docker compose --profile "*" up -d 

 

这里记得一定要把我们刚下载的docker打开 

 

实测你把魔法打开,部署下载要顺利一点。 

 

第一次部署需要等待一段时间下载完毕后启动服务后,通过浏览器访问 http://localhost:8888/ 即可打开 Coze Studio。

 

4.3报错解决

博主的系统是Windows,在启动过程中发现了错误,出现service "elasticsearch-setup" didn't complete successfully: exit 127

 

 通过Deepseek排查,发现是windows特有的问题

 

解决办法:来到这个目录,coze-studio\docker\volumes\elasticsearch,用vscode(我用的Curosr)打开红框中setup_es.sh文档。 

 

打开后看到右下角,显示的是CRLF,换成LF就解决了! 

 

在实际的使用中发现目前的开源版本阉割了许多东西,但是不管怎么样,如果你有能力,就可以在这个版本上开发你想要东西,才开源,我相信有很多的技术大神能把coze玩出花来!

并且目前Coze一天才500积分,根本就不够玩,本地的Coez很适合新手去用来练手了!

 

 

 

 

 零基础入门AI大模型

今天贴心为大家准备好了一系列AI大模型资源,包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

1.学习路线图

在这里插入图片描述

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

2.视频教程

网上虽然也有很多的学习资源,但基本上都残缺不全的,这是我自己整理的大模型视频教程,上面路线图的每一个知识点,我都有配套的视频讲解。

 

 

(都打包成一块的了,不能一一展开,总共300多集)

3.技术文档和电子书

这里主要整理了大模型相关PDF书籍、行业报告、文档,有几百本,都是目前行业最新的。

4.LLM面试题和面经合集

这里主要整理了行业目前最新的大模型面试题和各种大厂offer面经合集。

 

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集

5.免费获取(扫下方二v码即可100%领取)

 

 

 

 

 

 

 

 

 

 

### Coze 本地部署教程和配置指南 #### 准备工作 为了顺利进行Coze本地环境部署,需确认已安装必要的依赖软件。通常情况下,这包括但不限于Python解释器及其开发包、pip工具以及虚拟环境管理工具如`venv`或`conda`[^1]。 #### 获取源码 访问官方仓库获取最新版本的Coze源代码是最直接的方式。通过Git克隆命令可以轻松完成此操作: ```bash git clone https://github.com/your-repo/coze.git cd coze ``` #### 创建并激活虚拟环境 创建一个新的Python虚拟环境有助于隔离不同项目的依赖关系,避免冲突发生。对于大多数Linux发行版而言,可执行如下指令来建立新的虚拟环境,并将其激活: ```bash python3 -m venv env source ./env/bin/activate ``` #### 安装依赖项 进入项目根目录后,利用Pip安装所需的Python库和其他依赖组件。一般会有一个名为requirements.txt文件列出了所有必需的第三方模块;按照下面的方法读取该列表并下载对应的包: ```bash pip install --upgrade pip pip install -r requirements.txt ``` #### 配置环境变量 某些设置可能需要调整默认参数以适应特定硬件条件或是满足安全性的考量。编辑`.env.example`复制一份作为实际使用的`.env`文件,依据实际情况修改其中涉及路径、端口号以及其他敏感信息的部分。 #### 启动服务 一切准备就绪之后,就可以尝试启动应用程序了。具体做法取决于框架的选择,但对于Flask这样的Web服务器来说,可以通过运行app.py脚本来实现这一点: ```bash python app.py ``` 如果一切正常的话,现在应该可以在浏览器里输入http://localhost:5000看到正在运行中的Coze实例界面。 #### 数据加密与隐私保护措施 相较于其他同类产品,Coze特别强调了数据的安全性和用户的隐私权。因此,在整个过程中务必重视有关于SSL证书申请、HTTPS协议启用等方面的工作,确保传输过程中的信息安全不被窃听篡改。同时也要注意定期备份重要资料以防意外丢失[^2]。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值