Prompt Engineering vs Vibe Coding vs Context Engineering

1. 提示工程(Prompt Engineering)

定义:通过设计优化输入提示(Prompt)引导大语言模型(LLM)生成高质量输出的技术,核心是“如何问对问题”。
核心特点

  • 任务导向:聚焦单次交互的指令设计,如明确角色、输出格式、示例提供(Few-Shot Learning)。
  • 静态性:提示词多为预定义模板,依赖人工调整优化,复用性有限。
  • 应用场景:代码生成、文本创作、翻译等简单任务,例如要求模型“用Python实现二分查找并输出代码块”。
    局限性
  • 模型表现易受措辞影响,稳定性差;
  • 无法解决知识截止、私有数据访问等复杂问题。

2. 氛围编程(Vibe Coding)

定义:由Andrej Karpathy提出的开发范式,开发者通过自然语言描述需求,与AI协作迭代生成代码,强调“描述优先于编码”。

核心特点

  • 动态协作:开发者充当“需求架构师”,AI负责实现细节,形成“描述→生成→测试→迭代”的闭环流程。
  • 工具生态:依赖Cursor、Windsurf等AI-IDE,整合语音输入、实时预览、调试工具等支持。
  • 提示策略:需提供明确上下文(如技术栈、现有代码片段)、分解任务、迭代优化提示。
    典型流程
  1. 定义目标 → 2. AI生成代码 → 3. 人工审查 → 4. 测试反馈 → 5. 迭代优化。
    优势与挑战
  • 降低入门门槛:开发者更关注业务逻辑而非语法细节;
  • 维护风险:AI生成代码需严格测试,否则可能增加技术债务。

Vibe coding 最大的问题是:它让开发变成了“碰运气”,而不是“可控的工程”Vibe Coding 的优势在于能够加速开发的初始阶段,并赋能那些编程技能有限的个人


3. 上下文工程(Context Engineering)

定义:系统性管理输入信息的动态工程方法,通过结构化上下文(如历史对话、外部知识、工具调用)提升模型任务能力。

核心特点

  • 动态信息整合:超越提示词,注入实时数据(RAG)、长期记忆、工具API描述等,构建“认知环境”。
  • 策略化设计:采用写入(Write)、选择(Select)、压缩(Compress)、隔离(Isolate)四策略管理上下文窗口。
  • 系统级优化:类比“操作系统”,LLM是CPU,上下文窗口是RAM,工程师需动态调度关键信息。
    应用场景
  • 金融分析:实时注入财报数据+市场新闻,生成多源融合报告;
  • 多Agent系统:自动驾驶中为感知/规划模块分配独立上下文,避免信息干扰。
    优势
  • 解决幻觉、知识截止问题,提升复杂任务(如医疗诊断、法律咨询)的可靠性。

三者的演进关系与对比

维度提示工程Vibe Coding上下文工程
核心目标优化单次指令自然语言驱动的迭代开发动态构建认知环境
信息管理静态提示词会话历史+项目上下文多源动态注入(RAG/工具/记忆)
适用场景简单任务(代码片段)原型开发、中小型项目复杂系统(医疗/金融)
技术成熟度成熟(2023年起)新兴(2025年主流)前沿(2025年爆发)
代表工具ChatGPT提示模板Cursor、WindsurfLangGraph+LangSmith

演进逻辑

  • 提示工程 → Vibe Coding:从单次指令到多轮协作,开发者角色从“编码者”转向“需求架构师”;
  • Vibe Coding → 上下文工程:从对话式开发到系统化信息管理,解决长任务中的幻觉和上下文过载问题。

总结:开发者如何选择?

  • 初级任务/快速原型:用提示工程设计清晰指令(如指定代码格式);
  • 中型项目/敏捷迭代:采用Vibe Coding工具链(如Cursor),注重提示分解与测试;
  • 企业级复杂系统:引入上下文工程,结合RAG、工具调用构建动态知识流。

💡 未来趋势

  • 上下文工程正成为AI辅助开发的核心技能,其“动态信息编排”能力将重塑人机协作边界。
  • 开发者需掌握工具链(如LangGraph管理状态)、理解信息压缩策略,以应对更复杂的系统需求

   如何系统的去学习大模型LLM ?

大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业?”“谁的饭碗又将不保了?”等问题热议不断。

事实上,抢你饭碗的不是AI,而是会利用AI的人。

科大讯飞、阿里、华为等巨头公司发布AI产品后,很多中小企业也陆续进场!超高年薪,挖掘AI大模型人才! 如今大厂老板们,也更倾向于会AI的人,普通程序员,还有应对的机会吗?

与其焦虑……

不如成为「掌握AI工具的技术人」,毕竟AI时代,谁先尝试,谁就能占得先机!

但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高。

针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料 分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程

一、LLM大模型经典书籍

AI大模型已经成为了当今科技领域的一大热点,那以下这些大模型书籍就是非常不错的学习资源。

在这里插入图片描述

二、640套LLM大模型报告合集

这套包含640份报告的合集,涵盖了大模型的理论研究、技术实现、行业应用等多个方面。无论您是科研人员、工程师,还是对AI大模型感兴趣的爱好者,这套报告合集都将为您提供宝贵的信息和启示。(几乎涵盖所有行业)

在这里插入图片描述

 三、LLM大模型系列视频教程

在这里插入图片描述

四、LLM大模型开源教程(LLaLA/Meta/chatglm/chatgpt)

在这里插入图片描述

LLM大模型学习路线 

阶段1:AI大模型时代的基础理解
  • 目标:了解AI大模型的基本概念、发展历程和核心原理。

  • 内容

  • L1.1 人工智能简述与大模型起源
  • L1.2 大模型与通用人工智能
  • L1.3 GPT模型的发展历程
  • L1.4 模型工程
  • L1.4.1 知识大模型
  • L1.4.2 生产大模型
  • L1.4.3 模型工程方法论
  • L1.4.4 模型工程实践
  • L1.5 GPT应用案例
阶段2:AI大模型API应用开发工程
  • 目标:掌握AI大模型API的使用和开发,以及相关的编程技能。

  • 内容

  • L2.1 API接口
  • L2.1.1 OpenAI API接口
  • L2.1.2 Python接口接入
  • L2.1.3 BOT工具类框架
  • L2.1.4 代码示例
  • L2.2 Prompt框架
  • L2.3 流水线工程
  • L2.4 总结与展望
阶段3:AI大模型应用架构实践
  • 目标:深入理解AI大模型的应用架构,并能够进行私有化部署。

  • 内容

  • L3.1 Agent模型框架
  • L3.2 MetaGPT
  • L3.3 ChatGLM
  • L3.4 LLAMA
  • L3.5 其他大模型介绍
阶段4:AI大模型私有化部署
  • 目标:掌握多种AI大模型的私有化部署,包括多模态和特定领域模型。

  • 内容

  • L4.1 模型私有化部署概述
  • L4.2 模型私有化部署的关键技术
  • L4.3 模型私有化部署的实施步骤
  • L4.4 模型私有化部署的应用场景

这份 LLM大模型资料 包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程等, 😝有需要的小伙伴,可以 下方小卡片领取🆓↓↓↓ 

<think>嗯,用户想了解VibeCoding的通用prompt示例或使用指南。从用户给的引用来看,需要综合整理一些实用方案。之前的回答已经详细介绍了VibeCoding的基本框架,包括目的、任务、上下文等模块,还提供了不同场景的通用prompt示例和优化策略。用户可能是个开发者或技术人员,希望通过AI辅助编程提高效率。用户对VibeCoding感兴趣,但可能不太清楚具体如何设计prompt。需要更具体、可落地的模板作为参考。我准备从多个角度帮用户解决这个问题:首先解释VibeCoding的核心机制,说明完整的prompt应该包含目的、任务等模块;然后提供不同场景的通用prompt模板,比如代码重构、函数实现、错误调试等;接着给出使用建议,如分阶段描述任务等;最后介绍输入法自定义短语等效率工具。特别注意引用材料里的关键点:问题领域、代码库特性等上下文要素。在模板中强化这些内容,确保用户能直接套用。比如在重构示例中加入架构兼容性的要求,符合引用[4]提到的关键要素。用户可能还关心网络环境的影响,但当前问题集中在prompt本身,可先聚焦解决核心需求。如果用户后续追问工具使用细节,再补充相关说明。</think> 基于Vibe Coding的核心思想(沉浸式编程+AI实时协同),以下是通用Prompt构建框架及典型场景示例,结合实践指南供参考: ### 一、Vibe Coding通用Prompt框架 1. **目的声明** `// 明确AI的角色和任务边界` *示例:* `你是我当前项目的AI结对编程助手,需严格遵循现有技术栈和代码规范,专注解决具体编码问题。拒绝提供理论解释,直接返回可集成的代码片段。` 2. **上下文注入** `/* 关键上下文要素(引用[4]要求)*/` ```markdown - 领域:[金融科技/物联网/游戏开发] - 技术栈:[Python 3.9 + Django 4.2 / Rust 1.75] - 架构模式:[微服务/事件驱动] - 性能要求:[响应时间<200ms/QPS>5000] - 特殊约束:[禁用全局变量/必须兼容MySQL 8.0] ``` 3. **任务指令** `-> 动作化描述需求` *正确示范:* `在services/payment_processing.py中创建异步函数,使用Celery实现信用卡支付重试机制,包含指数退避算法和异常日志记录` ### 二、典型场景Prompt示例 #### ▶️ 代码重构场景 ```prompt **目的**:优化既有函数性能 **上下文**: - 当前函数路径:utils/data_cleaner.py - 技术约束:Pandas 2.0 + 内存占用<100MB - 原函数缺陷:处理10万行CSV时OOM **任务**: 1. 用迭代器替代read_csv() 2. 添加进度条(使用tqdm) 3. 保持与现有clean_schema()的兼容性 -> 仅返回修改后的完整函数代码 ``` > *提示:引用[4]中的架构兼容性要求在此体现[^4]* #### ▶️ 新功能实现 ```prompt /* AI角色设定 */ 你现在是精通REST API设计的Python专家 /** 硬性约束 **/ - 必须使用FastAPI - 响应格式:JSON API标准 - 认证:JWT令牌(已存在auth.py) -> 在routers/user_management.py创建: 1. POST /users/ 实现带密码强度校验的用户注册 2. 密码存储使用bcrypt 3. 返回201 Created及Location头部 // 拒绝理论解释只返回代码 ``` #### ▶️ 错误修复(强化上下文) ```prompt [问题域]分布式任务调度 [异常现象] Celery worker频繁丢失Redis连接报ECONNRESET [环境信息] - Redis 6.2哨兵模式 - celery==5.3.4 - 错误日志片段:...(见下方)... [已尝试方案] ✓ 增加socket_timeout ✗ 连接池参数调整无效 -> 给出5种可能解决方案的优先级排序 ``` ### 三、Vibe Prompt优化策略 1. **分层描述法** ```markdown [初级需求]实现XX功能 → [进阶需求]在[具体文件]中用[指定技术]实现XX功能,需满足[性能指标]并与[已有模块]交互 ``` 2. **防幻觉约束** `// 显式声明知识边界` *示例:* `若解决方案需要Python 3.10+特性,请立即声明此需求与当前3.9环境冲突` 3. **输出格式化控制** ```prompt /* 格式指令 */ -> 代码块用```python包裹 -> 配置类返回YAML格式 -> SQL语句添加版本注释 ``` ### 四、效率提升工具 1. **输入法快捷短语**(引用[3]) 配置搜狗输入法自定义短语: `vibe` → `[技术栈:Python+Django][要求:内存<100MB]` `debug` → `/* 错误复现步骤 */\n1. 触发条件...` 2. **IDE模板插件** 在VSCode创建Snippet: ```json "Vibe-API": { "prefix": "vibeapi", "body": [ "[技术栈:${1|FastAPI,Flask,Spring Boot|}]", "认证方式:${2:JWT}", "-> 创建${3:POST}端点..." ] } ``` > **提示**:网络不稳定时可优先采用本地化工具(如开源LLM+VS Code插件)保障沉浸体验,建议参考引用[1]的本地部署方案[^1]。对于复杂系统,使用`[模块名]:[需求描述]`的模块化指令拆分能显著提升响应准确率。 --- ### 常见问题处理建议 | 问题类型 | Prompt优化策略 | 效果提升点 | |----------------|-------------------------|--------------------------| | AI偏离技术栈 | 首行声明`// 仅限Java8语法` | 减少版本不兼容问题 | | 忽略性能要求 | 添加`[压测指标QPS>10000]` | 生成更健壮的资源管理代码 | | 架构冲突 | 插入`[禁止修改database/]` | 保护核心模块完整性 |
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值