轻松理解vLLM:大语言模型推理的高效利器与实用示例

vLLM是一个专门为大型语言模型(LLM)推理设计的开源框架,目标是让模型在实际应用中更快、更省显存,同时支持多任务和多用户场景。下面用最简单的方式介绍它的基础知识、核心技术、应用场景,并配上示例代码,帮助大家快速理解和使用。

vLLM是什么?

  • vLLM全称:Very Large Language Model,意指专门针对超大规模语言模型推理优化的框架。

  • 核心技术——PagedAttention(分页注意力)

    • 灵感来自操作系统的虚拟内存分页技术。
    • 将注意力机制中的键(key)和值(value)缓存分成固定大小的“页”,分块存储和管理。
    • 这样做减少了显存碎片和浪费,显存利用率高达96%以上,内存浪费不到4%。
    • 还能让GPU显存支持更多并发请求,提升整体效率。
  • 性能优势

    • 吞吐量比传统的HuggingFace Transformers框架高出最高24倍。
    • 文本生成推理速度比HuggingFace Text Generation Inference快约3.5倍。
    • 不需要修改模型结构,直接替换推理框架即可享受加速。
  • 兼容性和灵活性

    • 支持HuggingFace模型无缝集成。
    • 支持多种解码算法(如并行采样、束搜索)。
    • 支持多GPU分布式推理(张量并行、流水线并行)。
    • 兼容OpenAI API接口,支持NVIDIA、AMD、Intel GPU和TPU等多种硬件。

vLLM解决了哪些问题?

问题vLLM的解决方案
显存碎片和浪费PagedAttention机制分块管理KV缓存,显存利用率接近最优。
推理吞吐量不足采用连续批处理、优化CUDA内核和推测解码技术,大幅提升推理速度。
多任务调度复杂先进的调度策略(先来先服务和抢占机制)保证高并发环境下资源合理分配。
多GPU分布式部署难度支持多GPU张量并行和流水线并行,简化大模型多设备部署。
集成难度高与主流模型和API兼容,降低开发者集成门槛。

vLLM的主要应用场景

  • 实时推理服务:如聊天机器人、智能客服,支持高并发、低延迟的对话生成。
  • 长文本生成:文章写作、摘要生成、创意内容创作等。
  • 多任务多用户环境:动态批处理多请求,保证资源高效利用。
  • 自然语言处理(NLP) :情感分析、问答系统、机器翻译、代码补全等。
  • 集成部署:可作为推理服务器,支持FastAPI前端,方便集成和分布式扩展。

vLLM核心技术详解:PagedAttention

PagedAttention将长文本的注意力计算划分为多个“页”,每页包含固定数量的词汇,模型只计算当前页内词汇和前一页部分词汇的关系,减少计算量和内存占用,提升推理速度。

PagedAttention原理示意

  1. 文本分页:将输入长文本分成多个小段(页),每页固定大小,比如128个token。
  2. 局部注意力计算:只计算当前页内token之间的注意力。
  3. 跨页部分连接:为了保证上下文连贯,计算当前页与前一页部分token的注意力。
  4. 循环处理:逐页处理,完成整个文本的推理。

这种方式让显存使用更均匀,减少了碎片,同时加速了推理过程。

vLLM使用示例代码

1. 安装vLLM

pip install vllm

2. 基础推理示例

from vllm import LLM, SamplingParams

# 准备多个输入提示
prompts = [
    "你好,我叫",
    "中国的首都是",
    "人工智能的未来是",
    "请介绍一下vLLM框架"
]

# 设置采样参数,temperature控制生成多样性,top_p控制采样范围
sampling_params = SamplingParams(temperature=0.8, top_p=0.95)

# 初始化vLLM,加载小型模型facebook/opt-125m(示例)
llm = LLM(model="facebook/opt-125m")

# 生成文本
outputs = llm.generate(prompts, sampling_params)

# 打印结果
for output in outputs:
    print(f"输入: {output.prompt}")
    print(f"生成文本: {output.outputs.text}\n")

3. 结合HuggingFace Tokenizer的示例

from transformers import AutoTokenizer
from vllm import LLM, SamplingParams

# 加载分词器
tokenizer = AutoTokenizer.from_pretrained("facebook/opt-125m")

# 采样参数
sampling_params = SamplingParams(temperature=0.7, top_p=0.9, max_tokens=50)

# 初始化vLLM
llm = LLM(model="facebook/opt-125m")

# 准备prompt
prompt = "请简要介绍人工智能的发展历程。"

# 生成文本
outputs = llm.generate([prompt], sampling_params)

# 输出结果
for output in outputs:
    print(f"输入: {output.prompt}")
    print(f"生成文本: {output.outputs.text}")

4. 运行OpenAI兼容API服务(命令行)

python -m vllm.entrypoints.openai.api_server --model facebook/opt-125m --trust-remote-code

默认监听8000端口,启动后可以用curl或Python调用:

curl http://localhost:8000/generate -d '{
  "prompt": "中国的经济发展趋势是",
  "temperature": 0.7,
  "n": 1
}'

vLLM性能数据参考

  • 在NVIDIA A100 GPU上,vLLM对LLaMA-13B模型的吞吐量比HuggingFace Transformers高出约24倍,比Text Generation Inference快3.5倍
  • 在长文本生成任务中,PagedAttention机制能将推理时间缩短近50%,同时保持生成质量
  • 对于Llama 8B模型,vLLM可实现吞吐量提升2.7倍,生成速度提升5倍

总结

vLLM是一个专门为大规模语言模型推理设计的高效开源框架,利用分页注意力(PagedAttention)技术优化显存管理和计算效率。它支持多GPU分布式推理,兼容主流模型和API,适合实时对话、长文本生成、智能客服等多种应用场景。通过简单的Python接口和命令行工具,开发者可以快速上手,显著提升模型推理性能和吞吐量。

 如何学习大模型?

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!

这是一份大模型从零基础到进阶的学习路线大纲全览,小伙伴们记得点个收藏!

请添加图片描述

100套AI大模型商业化落地方案

请添加图片描述

大模型全套视频教程

请添加图片描述

200本大模型PDF书籍

请添加图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

LLM面试题合集

请添加图片描述

大模型产品经理资源合集

请添加图片描述

大模型项目实战合集

请添加图片描述

😝有需要的小伙伴,可以扫描下方二v码免费领取【保证100%免费】🆓

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值