基于YOLOv5的单目视觉车辆距离检测算法详解

基于YOLOv5的单目视觉车辆距离检测算法详解

1. 算法概述

本算法基于YOLOv5目标检测框架,结合单目视觉几何原理,实现了对前方车辆距离的精确测量。该方案由KinkangLiu改进并发布新版本,新增了相对速度检测功能(Monocular Distance Velocity Detect),通过整合Deep Sort算法实现对周围车辆距离和相对速度的综合检测。
在这里插入图片描述

1.1 技术架构

系统采用双阶段处理流程:

  1. 目标检测阶段:使用YOLOv5识别视频帧中的车辆目标
  2. 距离计算阶段:基于单目视觉几何原理计算检测到的车辆与摄像头的实际距离

2. 环境配置与运行指南

2.1 硬件要求

  • GPU推荐:NVIDIA 3060及以上显卡
  • 显存要求:至少6GB显存以获得流畅运行体验

2.2 软件环境

# 基础环境
Python 3.8
PyTorch 1.9.0 + CUDA 10.2

# 安装命令
conda install pytorch==1.9.0 torchvision==0.10.0 torchaudio==0.9.0 cudatoolkit=10.2 -c pytorch

2.3 运行方式

python estimate_distance.py --source YOUR_PATH\data\images\demo.mp4 --view-img

在这里插入图片描述

3. 核心算法原理

3.1 距离测量模型

系统基于单目视觉的几何约束关系建立距离测量模型,关键参数包括:

def __init__(self):
    # 相机图像尺寸参数
    self.W = 1280  # 图像宽度(像素)
    self.H = 720   # 图像高度(像素)
    
    # 物理安装参数
    self.camera_height = 0.4  # 相机离地高度(米)
    self.angle_a = 0         # 相机俯仰角(度)

3.2 距离计算公式

系统通过以下几何关系计算目标距离:

  1. 基于目标在图像中的垂直位置计算纵向距离
  2. 考虑相机高度和俯仰角的几何校正
  3. 通过透视变换建立像素坐标与世界坐标的映射关系

4. 输出结果解析

算法输出包含丰富的信息维度:

label = label + ' ' + str('%.1f' % d[0]) + 'm ' + str(location)
  • 距离信息:d[0]表示目标车辆与摄像头的直线距离(米)
  • 位置信息
    • -1:目标车辆位于画面左侧
    • 0:目标车辆位于画面中央
    • 1:目标车辆位于画面右侧

5. 参数调优指南

在这里插入图片描述

5.1 关键参数校准

  1. 相机高度(H)

    • 测量误差直接影响距离计算精度
    • 建议使用激光测距仪精确测量安装高度
  2. 俯仰角(angle_a)

    • 零度表示相机水平安装
    • 可使用专业水平仪进行校准
    • 每1度偏差会导致约1.7%的距离计算误差

5.2 性能优化建议

  1. 对于高分辨率输入(1080p及以上),建议调整YOLOv5的inference尺寸:

    parser.add_argument('--imgsz', '--img', '--img-size', type=int, default=640, help='inference size (pixels)')
    
  2. 实时性要求高的场景可选用YOLOv5s模型:

    parser.add_argument('--weights', type=str, default='yolov5s.pt', help='model path')
    

6. 新版本功能扩展

6.1 相对速度检测

新版本整合Deep Sort算法实现:

  1. 多目标跟踪保持ID一致性
  2. 基于连续帧距离变化计算相对速度
  3. 运动轨迹预测与滤波

6.2 系统架构升级

  1. 增加速度估计模块:

    def estimate_velocity(self, track_history, fps):
        # 基于轨迹历史计算速度
        pass
    
  2. 改进的输出界面:

    label = f"{class} {distance:.1f}m {velocity:.1f}m/s {location}"
    

7. 应用场景与限制

7.1 典型应用

  • 前向碰撞预警系统(FCWS)
  • 自适应巡航控制(ACC)
  • 智能泊车辅助

7.2 技术限制

  1. 测量精度受相机标定影响显著
  2. 夜间或低光照环境性能下降
  3. 极端天气条件(大雨/大雪)可能影响检测效果

8. 后续改进方向

  1. 多传感器融合:结合雷达数据提升鲁棒性
  2. 深度学习优化:采用注意力机制改进小目标检测
  3. 三维姿态估计:扩展至车辆三维空间位置估计

本系统为智能驾驶感知提供了经济高效的解决方案,通过单目摄像头即可实现车辆距离检测,相比多目或雷达方案具有显著的成本优势。开发者可根据实际应用场景调整参数,获得最佳性能表现。




重要代码

class DistanceEstimation:
    def __init__(self):
        #自己相机的图像尺寸
        self.W = 1280
        self.H = 720
        self.excel_path = r'./camera_parameters.xlsx'

    def camera_parameters(self, excel_path):
        df_intrinsic = pd.read_excel(excel_path, sheet_name='内参矩阵', header=None)
        df_p = pd.read_excel(excel_path, sheet_name='外参矩阵', header=None)

        print('外参矩阵形状:', df_p.values.shape)
        print('内参矩阵形状:', df_intrinsic.values.shape)

        return df_p.values, df_intrinsic.values

    def object_point_world_position(self, u, v, w, h, p, k):
        u1 = u
        v1 = v + h / 2
        print('图像坐标系关键点:', u1, v1)

        #alpha = -(90 + 0) / (2 * math.pi)
        #peta = 0
        #gama = -90 / (2 * math.pi)

        fx = k[0, 0]
        fy = k[1, 1]
        #相机高度
        #关键参数,不准会导致结果不对
        H = 0.4
        #相机与水平线夹角, 默认为0 相机镜头正对前方,无倾斜
        #关键参数,不准会导致结果不对
        angle_a = 0
        angle_b = math.atan((v1 - self.H / 2) / fy)
        angle_c = angle_b + angle_a
        print('angle_b', angle_b)

        depth = (H / np.sin(angle_c)) * math.cos(angle_b)
        print('depth', depth)

        k_inv = np.linalg.inv(k)
        p_inv = np.linalg.inv(p)
        # print(p_inv)
        point_c = np.array([u1, v1, 1])
        point_c = np.transpose(point_c)
        print('point_c', point_c)
        print('k_inv', k_inv)
        #相机坐标系下的关键点位置
        c_position = np.matmul(k_inv, depth * point_c)
        print('相机坐标系c_position', c_position)
        #世界坐标系下
        c_position = np.append(c_position, 1)
        c_position = np.transpose(c_position)
        c_position = np.matmul(p_inv, c_position)
        d1 = np.array((c_position[0], c_position[1]), dtype=float)

        return d1



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值