声明:文章是从本人公众号中复制而来,因此,想最新最快了解各类智能优化算法及其改进的朋友,可关注我的公众号:强盛机器学习,不定期会有很多免费代码分享~
目录
雪消融优化算法(Snow Ablation Optimizer, SAO)是一种新型的元启发式算法(智能优化算法),灵感来源于雪的升华和融化行为。不同于以往的动物园算法,该算法结构清晰,也有独特的策略,性能不错,值得一试!该成果由Deng Lingyun 于2023年发表在SCI期刊《Expert Systems With Applications》上!
WOS上引用量显示,该算法发表以来,被引次数达到了162次,妥妥的高被引算法!
原理简介
灵感:在物理学上,雪可以转化为两种形式:液态水和蒸汽,与这两种形式相对应的是两个物理过程:融化和升华。如下图所示,雪在融化过程中转化为液态水,而通过升华可以直接转化为蒸汽,同时,注意,雪融化转化的液态水也可以通过蒸发转化为蒸汽。
一、初始化阶段
通过设置优化参数的上下限,利用公式 (4.1) 随机生成一批初始粒子:
Z为初始粒子位置;L为各待优化参数的下限;U为各待优化参数的上限;θ为[0,1]的随机数。
二、勘探阶段
该阶段利用高斯布朗运动来模拟当雪或由雪消融的水转变为蒸汽时出现的高度分散特征。基于这一过程更新探索位置,从而扩大搜索范围。位置更新公式如下:
式中:Z(i)t为第t次迭代中第i个粒子的位置;BM(i)t为由表示布朗运动的高 斯分布生成的一个随机数向量;表示按行相乘;θ(i)为[0,1]的随机数;G(t)表示 当前的最优粒子;Elite(t)为一个精英合集中的随机个体;Z(t)为整个粒子位置 的质心。相应的数学表达式如下:
式中,Zsecond(t)和Zthird(t)为第二优和第三优的粒子位置;Zc(t)为适应度值排名前50%的粒子质心位置。
三、开发阶段
在该阶段,主要利用融雪模型(度日法)来围绕当前的最优解进行开发,从而获得更优的解,而不是进一步扩展其高度分散的功能。此阶段的位置更新公式如下:
式中,θ2为[-1,1]的随机数。M为度日法融雪模型,其表达式如下:
式中,t为当前迭代次数;tmax为最大迭代次数。
四、双种群机制
在SAO算法中,为了维持探索和开采两个阶段的平衡,设计了双种群机制。该机制为在寻优早期阶段,将整个粒子种群随机分为两个大小相等的子种群,分别负责探索和开采。然后,随着迭代的进行,探索的子种群尺寸逐渐减小,而开采的种群尺寸相应增大。对应的伪代码如下:
算法伪代码
为了使大家更好地理解,这边给出作者算法的伪代码,非常清晰!
如果实在看不懂,不用担心,可以看下源代码,再结合上文公式理解就一目了然了!
性能测评
原文作者利用29个典型的CEC2017无约束基准测试函数和22个CEC 2020真实世界约束优化问题验证其强度,仿真结果表明,该方法是一种非常有前途的方法,可以获得比现有方法更好的性能。
这边为了方便大家对比与理解,采用23个标准测试函数,即CEC2005,设置种群数量为30,迭代次数为1000,和同样2023年新出的霜冰优化算法进行对比!这边展示其中5个测试函数的图,其余十几个测试函数大家可以自行切换尝试!
可以看到,这个算法在大部分函数上均优于23年新出的霜冰优化算法,说明该算法性能还是比较不错的!大家应用到各类预测、优化问题中也是一个不错的选择~
参考文献
[1]Deng L, Liu S. Snow ablation optimizer: A novel metaheuristic technique for numerical optimization and engineering design[J]. Expert Systems with Applications, 2023, 225: 120069.
完整代码
如果需要免费获得图中的完整测试代码,只需点击下方小卡片,再后台回复关键字,不区分大小写:
SAO
也可点击下方小卡片,再后台回复个人需求(比如SAO-FMD)付费定制以下SAO算法优化模型(看到秒回):
1.回归/时序/分类预测类:SVM、RVM、LSSVM、ELM、KELM、HKELM、DELM、RELM、DHKELM、RF、SAE、LSTM、BiLSTM、GRU、BiGRU、PNN、CNN、BP、XGBoost、LightGBM、TCN、BiTCN、ESN、Transformer等等均可~
2.组合预测类:CNN/TCN/BiTCN/DBN/Transformer/Adaboost结合SVM、RVM、ELM、LSTM、BiLSTM、GRU、BiGRU、Attention机制类等均可(可任意搭配非常新颖)~
3.分解类:EMD、EEMD、VMD、REMD、FEEMD、TVFEMD、CEEMDAN、ICEEMDAN、SVMD、FMD等分解模型均可~
4.路径规划类:机器人路径规划、无人机三维路径规划、冷链物流路径优化、VRPTW路径优化等等~
5.优化类:光伏电池参数辨识优化、光伏MPPT控制、储能容量配置优化、微电网优化、PID参数整定优化、无线传感器覆盖优化、图像分割、故障诊断、车间调度等等均可~~
6.原创改进优化算法(适合需要创新的同学):原创改进2023年的雪消融优化算法SAO以及黑翅鸢BKA、秃鹰算法BES等任意优化算法均可,保证测试函数效果,一般可直接核心!