TensorFlow
- 使用图 (graph) 来表示计算任务.
- 在被称之为 会话 (Session) 的上下文 (context) 中执行图.
- 使用 tensor 表示数据.
- 通过 变量 (Variable) 维护状态.
- 使用 feed 和 fetch 可以为任意的操作(arbitrary operation) 赋值或者从其中获取数据.
构建图
import tensorflow as tf
# 创建一个常量 op, 产生一个 1x2 矩阵. 这个 op 被作为一个节点
# 加到默认图中.
#
# 构造器的返回值代表该常量 op 的返回值.
matrix1 = tf.constant([[3., 3.]])
# 创建另外一个常量 op, 产生一个 2x1 矩阵.
matrix2 = tf.constant([[2.],[2.]])
# 创建一个矩阵乘法 matmul op , 把 'matrix1' 和 'matrix2' 作为输入.
# 返回值 'product' 代表矩阵乘法的结果.
product = tf.matmul(matrix1, matrix2)
# 运行
with tf.Sesstion as sess:
print(sess.run(product))
# 输出结果
[[12.]]
Tensor
TensorFlow 程序使用 tensor 数据结构来代表所有的数据, 计算图中, 操作间传递的数据都是 tensor. 你可以把 TensorFlow tensor 看作是一个 n 维的数组或列表. 一个 tensor 包含一个静态类型 rank, 和 一个 shape.
变量
当训练模型时,用变量来存储和更新参数。变量包含张量 (Tensor)存放于内存的缓存区。建模时它们需要被明确地初始化,模型训练后它们必须被存储到磁盘。这些变量的值可在之后模型训练和分析是被加载。
创建
当创建一个变量时,你将一个张量作为初始值传入构造函数Variable()。TensorFlow提供了一系列操作符来初始化张量,初始值是常量或是随机值。
import tensorflow as tf
# Create two variables.
weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35), name="weights")
biases = tf.Variable(tf.zeros([200]), name="biases")
调用tf.Variable()添加一些操作(Op, operation)到graph:
- 一个Variable操作存放变量的值。
- 一个初始化op将变量设置为初始值。这事实上是一个tf.assign操作.
- 初始值的操作,例如示例中对biases变量的zeros操作也被加入了graph。
初始化
变量的初始化必须在模型的其它操作运行之前先明确地完成。
方法一: 使用tf.initialize_all_variables()
添加一个操作对变量做初始化。
import tensorflow as tf
# Create two variables.
weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35), name="weights")
biases = tf.Variable(tf.zeros([200]), name="biases")
...
# Add an op to initialize the variables.
init_op = tf.initialize_all_variables()
方法二: 用其它变量的值初始化一个新的变量时,使用其它变量的initialized_value()
属性。你可以直接把已初始化的值作为新变量的初始值,或者把它当做tensor计算得到一个值赋予新变量。
import tensorflow as tf
# Create a variable with a random value.
weights = tf.Variable(tf.random_normal([784, 200], stddev=0.35), name="weights")
# Create another variable with the same value as 'weights'.
w2 = tf.Variable(weights.initialized_value(), name="w2")
# Create another variable with twice the value of 'weights'
w_twice = tf.Variable(weights.initialized_value() * 0.2, name="w_twice")
保存和加载
最简单的保存和恢复模型的方法是使用
tf.train.Saver
对象。
import tensorflow as tf
# Create some variables.
v1 = tf.Variable(..., name="v1")
v2 = tf.Variable(..., name="v2")
...
# Add ops to save and restore all the variables.
saver = tf.train.Saver()