量子位

追踪人工智能新趋势,报道科技行业新突破

  • 博客(9887)
  • 收藏
  • 关注

转载 字节发了个机器人全能大模型,带队人李航

在模拟真实环境的交互测试,使用UMI设备在线评估,Robix-32B在5个任务中的3个超越Gemini 2.5 Pro,且平均任务进度略高,且大幅超越Qwen2.5-VL-32B。而Robix本身也并不是多个模块拼合的散装大脑,而是一个视觉-语言融合的单模型,能同时处理画面、语言,还能把思考过程、动作指令、人类回复整合在一个逻辑循环里,避免模块间沟通卡顿。在强化学习阶段,用专门算法纠正“想的和做的不一样”的问题,通过“做对给奖励、做错给提醒”的方式,让它在长时间任务里决策更稳、动作更准;

2025-09-06 11:45:55 16

转载 拜拜Claude!阿里最强万亿模型编程秒了Opus4,实测在此

相较于2.5系列,新版本在中英文理解、复杂指令遵循、工具调用等维度实现了显著增强,同时大幅减少了知识幻觉,让模型更智能、更可靠。更多官方测评显示,Qwen3-Max-Preview一登场不仅比自家前一代最强模型Qwen3(235B)更强,而且还打败了包括。当然,如果你更懂提示词,效果也会更好,某网友为Qwen3-Max-Preview制作的庆祝网页效果就还不错。确实是我们搞过的最有趣的模型,(虽然)配方上没有大改,但比之前的235B版本明显好了不少。几乎一下子就比前一代Qwen3(235B)多了四倍之多,

2025-09-06 11:45:55 32

转载 调整训练数据出场顺序,大模型就能变聪明!无需扩大模型/数据规模

数据顺序在语言模型训练中的潜力尚未被充分挖掘, 数据效能旨在通过合理的数据组织方式,使模型在有限的训练数据和资源下实现更高的性能和泛化能力,成为提升语言模型性能的一种新兴方法。与以往关注的“数据训练效率” (Data Efficiency) 侧重数据筛选的研究目的不同,数据效能强调对训练数据的评分和排序,以充分挖掘数据的潜在价值。基于此观察,微软亚洲研究院最新提出的文本数据组织范式DELT,通过引入数据排序策略,充分挖掘训练数据潜力,实现了数据的高效利用与效能提升。因此,训练样本的组织顺序显得尤为关键。

2025-09-06 11:45:55 15

转载 视频理解新标杆,快手多模态推理模型开源:128k上下文+0.1秒级视频定位+跨模态推理

有了质量可控的答案后,模型借助链式思考冷启动流水线迅速补齐推理深度,先自动生成带步骤的解答,再由第二模型逐步打分进行分级,中档样本经人工精修后复审,高分样本直接入库,为后续强化学习提供可靠冷启动权重。模型首先会对连续帧做patch级余弦相似度计算,若与最近一次“慢帧”(又称变化帧,低帧数高分辨率)相似度>95%则判定为“快帧” (又称静止帧,高帧数低分辨率),否则标记为新“慢帧”。

2025-09-05 18:56:35 56

转载 第一家被收购的AI浏览器公司,43亿成交,产品还在内测

其中,投资者也不乏有PaceCapital、LinkedIn的Jeff Weiner、Medium的EvWilliams、Figma的Dylan Field、Notion的Akshay Kothari以及GitHub的Jason Warner这样的大佬。早在一年前,两家CEO就有过联系,并有了收购合并的念头。而在去年,The Browser Company还以5.5亿美元的估值,拿到了5000万美元的融资。不难看出,Dia针对目前的SaaS工作流进行了一定的优化,并借由AI打通了孤立的应用、文档节点。

2025-09-05 14:32:38 24

转载 全给黄仁勋玩明白了!15亿美元租自家GPU/教小弟用GPU换融资,英伟达又一世子被曝准备IPO

通过这种“循环关系”,英伟达直接推动Lambda在GPU市场的渗透,使其成为AWS、Azure等传统巨头之外“新云”的关键补充。根据英伟达披露的13F文件,截至今年6月30日,CoreWeave已成为英伟达投资组合中的绝对核心资产。目前数据中心业务已经成为英伟达最主要的增长引擎,2026财年Q2数据中心业务贡献411亿美元营收,同比增长56%,其中Blackwell平台收入环比增长17%,已进入规模化阶段。这对于双方而言是共赢的,英伟达能够保护自身核心业务,小型云厂商也能在英伟达的助力下快速成长。

2025-09-05 14:32:38 23

转载 ChatGPT新功能,又干掉一批创业项目

而这个功能的作用也是如其名,现在只需要点击“分支对话”的按钮,就可以在原有对话的基础上“岔个话题”聊天了。比如T3.chat,就靠这个功能吸引了不少用户,它的页面上的branch off按钮(嗯,又是一记重拳)。可以看到,ChatGPT清晰地记得之前“分支功能”的话题,并询问是否需要将这两个话题的核心内容做合并。不过虽然这个功能对于团队协作有用(从主线各自分支对话,互不打扰),但网友们似乎还在提出改进的建议。虽然功能不算big,但要知道,之前很多创业公司可都是主打这类分支对话功能。

2025-09-05 12:28:22 23

转载 字节Seed最新版原生智能体来了!一个模型搞定手机/电脑/浏览器自主操作

在每轮迭代中,团队会使用拒绝采样(RFT)或交互标注生成新轨迹,这些轨迹记录了模型在执行任务过程中的推理、动作、环境状态以及反馈等信息,将其按质量筛选后,高质量的进微调数据集,低质量的进预训练数据集。:以大语言模型为核心决策器(Planner),将自然语言指令→GUI/终端/工具操作,全部纳入一个通用执行循环,同时支持GUI点击、键盘输入、终端命令、API调用等多种操作流。编写一个可以转换重量单位的函数。构建一个真正原生、通用、跨平台的GUI智能体,能在电脑、手机、网页、终端,甚至游戏里自主完成复杂任务。

2025-09-05 12:28:22 29

转载 突破具身智能“专家困境”!北大新方法让宇树G1靠单一框架掌握跳舞和侧手翻

多专家融合的通用策略:通过DAgger算法将多个专家策略的知识蒸馏到一个通用策略中,实现跨动作类型的无缝切换。语义特征编码:利用BERT模型对动作文本描述(如“托马斯回旋:水平旋转360度,双手支撑地面”)进行编码处理,并通过Transformer映射至与运动特征同维度的隐空间。通过对比学习将运动特征与语义特征在同一隐空间对齐,确保具有相似语义或者运动特征的动作在隐空间中靠近,形成运动-语义联合表征。该方法自动捕捉动作的运动学特征与语义的关联,使聚类结果在运动学与语义上的一致性得到提升。

2025-09-05 09:47:01 29

转载 DeepSeek新大招曝光:下一步智能体

此前,业内普遍推测,按照DeepSeek V3和DeepSeek R1的发布节奏,在被期待已久的“R2”之前,DeepSeek应该会先一步推出新一代V系列的基础模型。彭博社援引知情人士消息,爆料DeepSeek的下一个模型,仅需少量提示,就能帮用户执行复杂操作,并且还能根据历史操作自我进化和学习。测评中,相较于DeepSeek-R1-0528,DeepSeek-V3.1也展现出了全面的性能提升。不管怎么说,可以确定的是,在2025年余下的最后1/3时间里,大模型领域的热闹依然将每天持续。

2025-09-05 09:47:01 26

转载 OpenAI宣布推出AI在线招聘平台,和微软的领英打起来了

更重要的是,OpenAI Jobs Platform不仅可以作为大公司吸引人才的渠道,它还将设立专门板块,帮助本地企业提升竞争力,并协助地方政府寻找所需的AI人才,更好地服务民众。但最最关键的是,该平台的出现会与领英形成直接竞争,而领英的联合创始人正是OpenAI最早的投资人之一里德·霍夫曼,同时领英也归OpenAI最大的资金支持者微软所有。现在,OpenAI计划进一步扩展OpenAI Academy,推出针对不同AI熟练度的认证课程,从工作中使用AI的基础技能,到AI定制岗位和提示词工程技能一应俱全。

2025-09-05 09:47:01 17

转载 告别海量标注!浙大团队提出GUI-RCPO,让GUI定位在无标签数据上自我进化

研究团队还尝试在GUI-RCPO训练之后,继续使用GUI-RC进行空间区域投票,并发现模型的表现还能进一步提升,说明通过这种自我强化的循环,模型可以在没有任何标注数据和外部监督的情况下,不断突破预期的性能上限。首先构建一张与屏幕截图相同大小的投票网格来记录模型每次采样中预测的区域,对于每一个预测结果,将其在网格上对应的区域记上一票,如果模型的预测结果是点坐标,则将其扩展成大小的方框,再投射到网格上。此外,GUI-RCPO对于已经在GUI任务上进行过预训练的模型仍然会带来进一步的提升,证明了方法的有效性。

2025-09-05 09:47:01 20

转载 英伟达老黄收购了一家AI编程公司

而对英伟达来说,这标志着其”AI收购狂潮”的延续:此次收购Solver将使其业务版图进一步扩张——从芯片、数据工具到AI智能体,其产业布局将持续深化。换句话说,整合Solver的技术不仅能缩短基于英伟达平台的企业开发周期,还将为这家芯片巨头在快速迭代的AI软件市场中开辟新的战略支点。而洛德作为Siri(对,苹果那个Siri)的联合创始人,曾参与设计可扩展的AI系统,为语音助手的落地奠定了基础。是的,就是那个阿里前VP贾扬清的初创公司,该公司出租由英伟达芯片驱动的服务器。

2025-09-05 09:47:01 20

转载 AI生成苹果Metal内核,PyTorch推理速度提升87%

第三级是完整的模型架构(如 AlexNet、VGG)。为了证明这一点,研究人员选取了来自Anthropic、DeepSeek和OpenAI的8个顶尖模型,让它们为苹果设备生成优化的GPU内核,以加速PyTorch推理速度。不过,在具体的性能加速方面,加入这些额外上下文实现了平均1.87倍的加速,相较于普通智能体仅实现的1.31倍的平均加速,额外上下文将提升幅度提高了三倍!再次,在评估指标方面,研究人员主要关注两个指标:一是AI生成内核的正确性,二是其相较于基准PyTorch的性能提升。

2025-09-04 16:36:49 30

转载 OpenAI盯上苹果开发者生态,吞了家AI编程公司

只不过最后的结局是被Windsurf竞对、OpenAI金主微软绊了一跤,交易告吹,Windsurf核心团队被谷歌一口气打包带走,剩余资产则由智能体Devin背后初创公司Cognition接盘。如今OpenAI出手,Alex解决了初创公司资金紧张的问题,OpenAI则补强了针对苹果开发环境的深度优化,并直接收获一波对Coding Agent有深入理解的AI人才。要知道,苹果官方直到上周,才在最新发布的Xcode 26 Beta 7中,加入了对Claude Sonnet 4和GPT-5的原生支持。

2025-09-04 14:39:03 17

转载 AI也邪修!Qwen3改Bug测试直接搜GitHub,太拟人了

它的测试逻辑是这样的:在代码修复类任务中,它给模型的任务全是真实开源项目里的bug,比如修复某个功能异常、补全缺失的代码模块,核心要求是模型能读懂现有的代码、定位到问题在哪,最后生成能够直接运行的解决方案。简单说就是,这个测试用的是开源项目数据,所以它连带着项目后续已经解决bug的提交记录一起放进去了,相当于把考题和参考答案混在一起,还没设权限。虽然说,按正常规则,这些模型确实是在作弊,但也有网友觉得:只要能完成任务,利用规则漏洞也没什么不行的。能说吗,会搜代码才是真正的程序员行为吧。

2025-09-04 14:39:03 20

转载 字节开源图像生成“六边形战士”,一个模型搞定人物/主体/风格保持

USO通过单一框架能统一之前那些看似孤立的任务包括主体、身份保持和风格化编辑,参考图风格迁移,同时保持主体和风格参考,甚至更抽象复杂的多风格迁移,是实打实的六边形战士。为了全面评估模型性能,团队首次设计了一个USO-Bench,全面评估不同任务类型的性能,分别包括主体驱动,风格驱动以及主体风格混合驱动生成,并且对比了一众最新模型。通过训练UNO模型得到一个风格化和去风格化的专家模型,然后利用这两个专家模型生成大批量三元组数据,最后通过VLM过滤出用于训练USO的数据集。

2025-09-04 12:38:55 25

转载 人形机器人终于学会洗碗了

不仅如此,它通过单一统一模型即可在各种任务中实现强大性能,仅使用一组神经网络权重,就能在不同容器中精准拾取放置物品、灵活操控抽屉与冰箱、协调多机器人完成灵巧交接,甚至能熟练操控数千种新物体。与此前能叠毛巾、分拣包裹的机器人一样,这次完成洗碗机装载任务的Figure 02也无需新的算法或特殊工程设计,新奇的餐具、凌乱的初始摆放、突发的碰撞,这些都要求系统能够不断适应和纠正,同时保持稳定可靠的表现。还是用的叠毛巾和分包裹的同款Helix架构,没有新的算法,没有特殊的工程,它会不会用沾满食物残渣的手再去叠衣服?

2025-09-04 12:38:55 19

转载 港科广×腾讯联手打造《我的世界》神操作,400张截图就能让AI挖矿通关,成本降至5%|EMNLP 2025

实验结果显示,在“获取钻石”完整链条上,VistaWise以33%成功率刷新非API类方法纪录,较前SOTA提升8个百分点,9个连续子任务全部达到73%以上的成功率。随着大模型在游戏、数字孪生、线上运营等场景的落地,腾讯发现:要让AI在复杂开放世界中自主决策,传统做法需要千万级标注样本与数百张高端显卡,训练成本动辄百万。基于PyAutoGUI封装多个原子动作函数,支持键鼠混合输入,让大模型直接生成带参调用,摆脱MineFlayer等API束缚,实现“零仿真”真机操作。

2025-09-04 12:38:55 15

转载 Hinton突然对AGI乐观了!“Ilya让他看到了什么吧…”

在设计之初,就为AI赋予强大的“母性本能”,让它们支持人类的成功,这样即使未来有一天,它变得更加聪明、更加强大,也能很好地与人类共存。,Hinton指出,马斯克自己在开发Grok的过程中,也没有过多关注安全问题,马斯克应该将他对待奥特曼的逻辑应用到自己身上。在很多人眼里,AI比人类聪明并接管整个世界,只是科幻小说的存在,但包括他在内的许多专家都认为,这其实是非常现实的长期风险。不过,Hinton在此前的上海之行交流中也提及,这是他所希望看到的,是值得去深入探究的可能性,但也可能无法实现。

2025-09-04 12:38:55 16

转载 AI搜索引擎,苹果决定自研!代号WKA

它将被集成到Siri中,帮助用户像用ChatGPT或Perplexity那样直接问答,能抓取全网信息,并通过AI摘要系统生成更准确、简洁的结果。众所周知,苹果和谷歌在互联网搜索领域一直是长期合作伙伴,多年合作使谷歌搜索成为iOS设备的默认入口,每年也为苹果贡献200亿美元的收入。仅在前一天,苹果就被曝出又失去了四名AI研究员,再加上最早离职的基础模型团队负责人庞若鸣在内,苹果AI已经在数周时间内失去了10名成员。此外,古尔曼称虽然苹果和Perplexity的交易可能黄了,但不排除苹果仍会继续进行收购交易。

2025-09-04 09:12:48 14

转载 GPT-5又帮陶哲轩解决了一个难题

在OEIS的参考文献里,陶找到了Yong-Gao Chen和Imre Z. Ruzsa这两位作者的一篇论文,这篇论文事实上已经给出了该问题的完整解决方案,只是Erdosproblems网站。:这是Thomas Bloom搭建的网站,收录了近1000道由著名数学家Erdős提出或传播的问题,并记录了每道题目前是“未解”、“已解”还是“部分解决”。AI本身算的不一定完全可靠,但它可以作为“定位器”,帮助找到那些更权威、更可靠的人类研究成果,这样就能兼顾效率和可信度。

2025-09-03 15:30:00 39

转载 世界模型,腾讯混元卷到了榜首

腾讯混元正在不断加速开源进展,除了包括混元Voyager在内的混元世界模型系列,还有MoE架构的代表性模型混元large、混合推理模型Hunyuan-A13B,以及多个面向端侧场景的小尺寸模型,最小仅0.5B参数。的特性,与此前已开源的混元世界模型1.0高度适配,可进一步扩展1.0模型的漫游范围,提升复杂场景的生成质量,并可对生成的场景做风格化控制和编辑。:提出了一种高效的世界缓存机制,该机制融合了点云剔除与自回归推理能力,可支持迭代式的场景扩展,并通过上下文感知的一致性技术实现平滑的视频采样。

2025-09-03 15:30:00 31

转载 Nano Banana官方提示词来了,附完整代码示例

此漫画中,主人公身穿风衣站在路灯下,背景中,一家荒凉酒吧的灯牌映照在水中,整体充满了浓厚的隐秘与危险氛围。通过清晰的场景描述,逐帧创建引人入胜的视觉叙事,特别适合制作故事板、漫画或任何形式的连环画。相比简单、不连贯的关键词列表,一段叙事性强、描述详细的段落通常能生成更好、更连贯的图像。此图整体采用黑白风格,中间的咖啡豆图标成为了整个设计的焦点,非常符合咖啡店的品牌形象。柔和的金色阳光透过窗户洒进画面,照亮了陶土的细腻质感和老人脸上的皱纹。先看看官方生成的图片,猫猫在双子座星空下的豪华餐厅里吃香蕉。

2025-09-03 13:17:03 36

转载 刚刚,宇树科技IPO时间定了!

在后来的发展中,他们也以全自研核心技术构建壁垒,以场景化产品打开市场,最终在四足与人形机器人两大赛道上均实现了从追赶到引领的跨越,成为了中国高新科技企业发展的成功经验。值得一提的是,宇树科技所选择的是传统的IPO方式,而非“借壳”上市的玩法,这也被业内认为能更直观地检验其技术商业化的成色和核心机器人资产的价值。从2016年实验室初创,到如今成为全球机器人领域的重要参与者,宇树用八年的时间完成了从技术积累到产品落地,再到市场引领的路径。其实,在2016年左右,机器人动力的。

2025-09-03 13:17:03 109

转载 腾讯混元最新开源成“最强翻译”:国际机器翻译比赛获30个语种第一

相比传统的机器翻译,基于大模型的翻译对于对话背景、上下文内容以及综合的翻译需求有更深度的了解,进而能够提供更加准确和“信达雅”的翻译,这也为翻译模型的落地应用打下了基础。在这样的“公平竞争”环境下,hunyuan-MT-7B以7B的参数规模击败了众多更大规模的系统,充分证明了技术方案的先进性。,Hunyuan-MT-7B能够在更多样化的硬件环境中部署,从高端服务器到边缘设备都能良好运行,并且模型的部署成本、运行成本和维护成本都相对更低,在保证翻译质量的前提下,为企业和开发者提供了更具吸引力的解决方案。

2025-09-03 13:17:03 36

转载 大模型“记性差一点”反而更聪明!金鱼损失随机剔除token,让AI不再死记硬背

因此,为了学到足够的语言模式,模型必须通过更多数据来补偿这些空缺,这可能导致计算效率的下降。在传统的next-token prediction中,模型以序列中的下一个真实token作为目标,输出预测分布,并基于该分布计算交叉熵损失。但这样做的问题在于:如果只是随机丢token,那么,每次看到同一段落时,丢掉的地方不一样,模型累计几次就能拼凑出完整段落。更进一步,为了确保模型不会从其他地方学到被掩码的数据(例如不同的文档会在不同的网页中反复出现),研究团队还提出了一种。得分为1.0表示完美记忆。

2025-09-03 13:17:03 24

转载 用“因果规划”解决多智能体协作中的任务依赖难题|港科广&腾讯

在 VillagerBench 三项基准任务(建造、烹饪、密室逃脱)中,相较 AgentVerse 与 VillagerAgent 基线,任务完成率最高提升 12%,效率提升最高达 1.5 倍。接下来,让新来的AI自动加入指数最低的那条线,既避免扎堆,也减少等待。之后,再用因果推理“精修”这张图,对每一条先后关系,让大模型回答“如果游戏规则变了,这条先后关系还成立吗?如果,所有规则改变均不影响关系的成立,就删掉这条关系,避免 AI 做无用功。论文提出“全局因果任务图”概念,让AI学会“如果-那么”的逻辑。

2025-09-03 13:17:03 67

转载 Claude估值暴涨300%!全球独角兽字节第三他第四

当时领投35亿美元融资的正是Lightspeed Venture Partners,同时值得关注的是,此次投资方中也出现了一些主权财富基金的身影,包括卡塔尔投资局和新加坡主权财富基金GIC。短短半年时间,公司营收从10亿美元年化,一跃突破50亿美元。要知道此前Anthropic在本轮融资的预期目标只有50亿美元,随后又提高到100亿美元,最终远超预期,达到了惊人的130亿美元。实际上,Anthropic开启新一轮融资以来,市场热情高涨,融资和估值也被一路推高,最终完成了130亿美元的单轮融资巨额。

2025-09-03 09:42:31 43

转载 奥特曼给ChatGPT空降高管,11亿美元收购独角兽创始人加入OpenAI…这剧情好熟悉啊

最新消息,OpenAI将以11亿美元全股票收购Statsig,公司原高管一并加入OpenAI,负责ChatGPT、CodeX等重要产品线。值得一提的是,她也曾是小扎的部下,2011年加入Facebook,2019年升任Facebook App负责人,带领6000多人的团队,是Facebook高速扩张期的功臣。此外,OpenAI现任工程主管Srinivas Narayanan将转任B2B应用CTO,和OpenAI的CMO Brad Lightcap直接合作,负责企业客户业务。以及未来应用的产品工程。

2025-09-03 09:42:31 27

转载 图像编辑太慢太粗糙?全新开源自回归模型实现精准秒级修改 | 智象未来

智象未来提出的VAREdit将视觉自回归建模引入指令引导的图像编辑中,将图像编辑定义为下一尺度预测问题,通过自回归地生成下一尺度目标特征残差,以实现精确的图像编辑。仅依赖最细粒度参考时,模型在预测粗粒度残差时往往难以适应,在预测粗粒度目标尺度残差的情形下尤其。它引入了视觉自回归(VAR)架构,能够在遵循指令的前提下做到“指哪打哪”,大幅提升编辑精准度与生成速度,推动图像编辑进入新的阶段。具体做法是在最大尺度条件模型中,将第一个自注意力层中的源图像条件输入进行各尺度匹配的下采样操作,得到对应尺度的参考特征。

2025-09-02 18:02:01 24

转载 LeCun今后发论文得亚历山大王批准!Meta搞出大无语操作

这个答案,其实在他选择重金买入Scale AI 49%股份,拉Alexandr Wang入主东宫当首席人工智能官的时候,或许就已经昭然若揭了。所以在AGI时代火烧眉毛的此时此刻,扎克伯格才会毫不犹豫地把Meta内部AI战略的指挥棒,交到这个比自己还要“扎克伯格”的人手里。论文作者需要将论文中提出的新技术运用到Meta的产品中,使其真正得到应用后,才能回到FAIR继续开展自己的常规工作。FAIR工龄久远,历史成绩斐然,还一直有Yann LeCun坐镇,但老实讲,它的命真的不算太好:。

2025-09-02 18:02:01 23

转载 他们在1993年就提出了Scaling Law

它是统计学习理论的基石,为学习算法的泛化条件提供了理论基础,并量化了模型的复杂性(通过VC维)。VC理论在无需定义任何先验分布的情况下,为机器学习提供了一种更通用的方法,与贝叶斯理论形成了对比。它首先在几个中等规模训练集上分别计算测试误差、训练误差,然后他们发现,随着训练集的规模变大,训练误差和测试误差都会收敛到一个相同的渐近值a,这个指数a在0.5-1之间。在合理的范围内,通过简单地增加模型参数量(N)、训练数据量(D)和计算量(FLOPS,C),可以以一种可预测的、平滑的方式显著提升模型性能。

2025-09-02 14:16:50 25

转载 7个AI玩狼人杀,GPT-5获断崖式MVP,Kimi手段激进

在整个群体中,GPT-5独占鳌头。数据显示,相比起GPT-4,GPT-5在Mock AIME上实现了+80%的飞跃,在Level 5 MATH上得分高达98%(GPT-4得分仅23%),提升了75%。而用户对GPT-5的接受度则更为复杂,觉得它似乎没有像GPT-4那样取得显著的进步,这可能与模型的开发方式有关:GPT-5专注于强化学习,而不是提升预训练的规模。报告显示,GPT-5在一些显著的性能基准测试中表现远超GPT-4,类似于GPT-4在其时代被广泛引用的基准测试中超越GPT-3的情况——

2025-09-02 14:16:50 60

转载 马斯克发布《宏伟蓝图4》:特斯拉80%价值在于机器人,还意外露出了一款新车

如今,我们正在把制造能力与自主研发实力结合起来,推出新的产品和服务,加速全球繁荣和人类幸福,推动经济增长的普惠共享。接着,我们重复了这一模式,推出Model 3、Model Y,并持续推进。像半导体和互联网这样的突破性发明,不仅没有减少,反而极大地扩展了人类社会与经济的可能性——从创造更多的就业岗位,到让更多人能够获取信息,再到促进更深层次的人际关系。即将开发的工具,将帮助我们构建一个一直梦想的世界——一个可持续富足的世界,通过在全球范围内、规模化地重新定义劳动力、出行方式与能源体系,让它真正惠及所有人。

2025-09-02 12:13:51 29

转载 用短视频成本生成长视频,字节Seed新注意力机制让计算量降低85%

除了机制本身,在工程实现方面,MoC回把选中的键值一次性打包进FlashAttention可变长核,实现对数千万token的线性伸缩且访存连续,在GPU上可充分并行。而MoC的核心机制,是,具体来说,先把跨模态序列切成语义同质的内容块,然后让每个查询token只与最相关的少数块建立注意力连接。因此,作者依据帧、镜头、模态边界动态切块,让每个块在三维位置上局部且语义一致,从源头上提高了检索精度,也避免了无谓的计算浪费。首先是写实场景,这段视频长度56秒,展示的是一老一少两个男人坐在咖啡馆中交谈的场景。

2025-09-02 12:13:51 21

转载 最新研究揭示视觉模型与人脑的对齐机制

在评估DINOv3模型与人类大脑视觉表征的相似度时,研究从功能性磁共振成像(fMRI )和脑磁图(MEG)中筛选出15个具有代表性的感兴趣区域(ROIs) ,覆盖从低级视觉皮层到高级前额叶皮层的完整视觉加工层级。研究还发现,类脑表征在AI模型中的出现遵循特定的时间顺序:模型先对齐人类早期感觉皮层表征,而要像大脑的高层区域(例如前额叶)一样处理信息,则需更多训练数据。最后是图像类型,即使只使用卫星图像或细胞图像训练的模型,也能显著捕捉到脑信号,但使用人类中心图像训练的模型在所有脑区的编码效果更高。

2025-09-02 12:13:51 16

转载 腾讯开源智能体新框架:不用训练无需充值,用开源模型实现SOTA Agent

同时引入了一个“meta-agent”,用户只需提出任务需求,系统就会通过与用户的交互澄清意图,并自动生成完整的配置文件。Youtu-agent读取CSV内容,经过数据清洗和统计分析后,会自动生成结构化的结论与趋势,并转化为一份直观的 HTML 报告。在传统方式中,用户往往需要自己手动编写prompt、配置工具和参数,这不仅对初学者来说存在较高的使用门槛,而且即使是有经验的用户,也要投入大量的时间成本。这意味着,Youtu-agent在完全开源可复现的条件下,已经接近甚至超越部分依赖付费工具的智能体框架。

2025-09-02 12:13:51 57

转载 大模型开始打王者荣耀了

(注:为了评估模型的质量,研究设置了以下不同规模的基线模型,包括Qwen-2.5-7B-Instruct、Qwen-2.5-14B-Instruct、Qwen-2.5-32B-Instruct、Qwen-3-14B-Instruct和Deepseek-R1)此外,正如我们开头提到的,经过SFT和GRPO训练(2000步)的Qwen-3-14B达到了90.91%的准确率,超过了参数量大一个数量级的 Deepseek-R1(86.67%)。这些数据展示了强大的推理能力,可以帮助较小的模型获取深度推理能力。

2025-09-02 09:40:26 23

转载 智谱开源GLM-4.5工具调用超越Claude Opus 4.1,成本仅1.4%

通过在覆盖六大开发领域、52个实际编程任务中对比GLM-4.5与Claude Sonnet 4、DeepSeek-V3.1、Kimi-K2和 Qwen3-Coder-480B,可以看出GLM-4.5在与顶尖开源模型对比时表现强劲,尤其在任务完成效果和工具调用可靠性方面。说到花费,值得提一嘴的是,智谱还推出了高性价比的Claude Code套餐,价格仅为Claude的1/7,适用于GLM-4.5以及GLM-4.5-Air。中,GLM-4.5已经超越Claude 4、Grok-4等。

2025-09-02 09:40:26 46

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除