斯坦福的2011年NIPS论文《Efficient Inference in Fully Connected CRFs with
Gaussian Edge Potentials》,阐述了如何使用高效的全连接条件随机场模型进行图像语义分割任务的应用。
一、CRF和denseCRF
基本的CRF模型是由一阶势函数和相邻元素构成的势函数所组成的图模型,很显然,在图像任务上,basic CRF模型一个劣势就是它只考虑了相邻的邻域元素,没有对整体进行考虑。
一个进一步的想法就是,将每一个像素点,对其他所有像素点都构成一个edge,达到稠密的全连接模型,此时面临的一个问题就是图像像素数目非常大,会有上万个点和数十亿的边,其计算复杂度导致模型几乎无法实施。
在Fully connected CRF中,随机场的吉布斯分布可以写作:P(X∣I)=1Z(I)exp(−∑cϕc(Xc∣I))P(X|I)= \frac{1}{Z(I)}exp(-\sum_{c} \phi_c(X_c|I) )P(X∣I)=Z(I)1exp(−∑cϕc(Xc∣I)),相应的吉布斯能量可以写作:E(x)=∑iϕu(xi)+∑i<jϕp(xi,xj)E(x)=\sum_{i}\phi_u(x_i)+\sum_{i<j}\phi_p(x_i,x_j)E(x)=i∑ϕ