密度聚类是一种常用的无监督学习算法,用于将数据集中的样本按照密度进行分组。DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一种经典的密度聚类算法,它能够发现任意形状的聚类,并且能够有效处理噪声数据。本文将介绍DBSCAN算法的原理,并提供相应的Python源代码实现。
DBSCAN算法的原理如下:
- 选择一个未被访问的数据点P。
- 如果P的邻域密度达到阈值,则创建一个新的聚类,并将P标记为已访问。
- 否则,将P标记为噪声点。
- 对于P的所有邻域密度达到阈值的点,如果其尚未被分配到任何聚类,则将其添加到当前聚类中,并标记为已访问。
- 重复步骤2-4,直到所有的数据点都被访问。
下面是使用Python实现DBSCAN算法的示例代码:
import numpy as np
from sklearn.neighbors import<