CNN网络中的感受野计算

博客围绕CNN网络展开,介绍了感受野的定义,即卷积神经网络特征所能看到输入图像的区域。阐述了感受野大小的计算方式、规则及计算公式,并通过具体示例,计算出一张图经过特定卷积层、激活函数层、BN层和池化层后的感受野为13。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在CNN网络中,一张图经过核为3 x 3,步长为2的卷积层,ReLU激活函数层,BN层,以及一个步长为2,核为2 x 2的池化层后,再经过一个3 x 3的的卷积层,步长为1,此时的感受野是?

感受野(Receptive Field)的定义:卷积神经网络每一层输出的特征图(feature map)上的像素点映射回输入图像上的区域大小。通俗点的解释是,特征图上一点,相对于原图的大小,也是卷积神经网络特征所能看到输入图像的区域。

CNN

1、感受野大小的计算方式是从最后一层 feature map 开始,往下往上的计算方法,即先计算最深层在前一层上的感受野,然后以此类推逐层传递到第一层;

2、感受野大小的计算不考虑padding的大小;

3、最后一层的特征图感受野的大小等于其卷积核的大小;

4、第 i i i 层特征图的感受野大小和第 i i i 层的卷积核大小和步长有关系࿰

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值