目录
哈希概念
哈希(hash)又称散列,是⼀种组织数据的方式。从译名来看,有散乱排列的意思。本质就是通过哈希函数把关键字Key跟存储位置建⽴⼀个映射关系,查找时通过这个哈希函数计算出Key存储的位置,进行快速查找。
我们来举个例子:
直接定值法
当关键字的范围⽐较集中时,直接定址法就是⾮常简单⾼效的⽅法,⽐如⼀组关键字都在[0,99]之间, 那么我们开⼀个100个数的数组,每个关键字的值直接就是存储位置的下标。再⽐如⼀组关键字值都在 [a,z]的⼩写字⺟,那么我们开⼀个26个数的数组,每个关键字acsii码-aascii码就是存储位置的下标。 也就是说直接定址法本质就是⽤关键字计算出⼀个绝对位置或者相对位置。
例如一道题:leetcode_字符串中出现一次的字符
思路:
创建一个整形数组,以每个字符的ascii码值作为下标,数组存储它们出现的次数,遍历字符串,将每个字符存进去,然后再遍历一遍字符串,寻找数组中的1(只出现一次)的字符!
代码:
class Solution {
public:
int firstUniqChar(string s) {
int count[26]={0};
//存入数组
for(char& e:s)
count[e-'a']++;
//寻找1
for(int i=0;i<s.size();i++)
{
if(count[s[i]-'a']==1) return i;
}
return -1;
}
};
哈希冲突
直接定址法的缺点也⾮常明显,当关键字的范围⽐较分散时,就很浪费内存甚⾄内存不够⽤。假设我 们只有数据范围是[0,9999]的N个值,我们要映射到⼀个M个空间的数组中(⼀般情况下M>=N),那么 就要借助哈希函数(hashfunction)hf,关键字key被放到数组的h(key)位置,这里要注意的是h(key)计 算出的值必须在[0,M)之间。
这里存在的⼀个问题就是,两个不同的key可能会映射到同⼀个位置去,这种问题我们叫做哈希冲突, 或者哈希碰撞。理想情况是找出⼀个好的哈希函数避免冲突,但是实际场景中,冲突是不可避免的, 所以我们尽可能设计出优秀的哈希函数,减少冲突的次数,同时也要去设计出解决冲突的方案。
负载因子
假设哈希表中已经映射存储了N个值,哈希表的大小为M,那么 负载因子为N/M ,负载因⼦有些地⽅ 也翻译为载荷因⼦/装载因⼦等,他的英文为loadfactor。负载因子越大,哈希冲突的概率越高,空间利用率越高;负载因子越小,哈希冲突的概率越低,空间利用率越低;
将关键字转为整数
我们将关键字映射到数组中位置,⼀般是整数好做映射计算,如果不是整数,我们要想办法转换成整 数,这个细节我们后⾯代码实现中再进⾏细节展示。下面哈希函数部分我们讨论时,如果关键字不是整数,那么我们讨论的Key是关键字转换成的整数。
哈希函数
⼀个好的哈希函数应该让N个关键字被等概率的均匀的散列分布到哈希表的M个空间中,但是实际中却 很难做到,但是我们要尽量往这个⽅向去考量设计。
除法散列法/除留余数法
- 除法散列法也叫做除留余数法,顾名思义,假设哈希表的⼤⼩为M,那么通过key除以M的余数作为 映射位置的下标,也就是哈希函数为:h(key)=key%M。
- 当使用除法散列法时,要尽量避免M为某些值,如2的幂,10的幂等。如果是2^X,那么key%2^X。
本质相当于保留key的后X位,那么后x位相同的值,计算出的哈希值都是⼀样的,就冲突了。如:
{63 , 31}看起来没有关联的值,如果M是16,也就是2^4 ,那么计算出的哈希值都是15,因为63的⼆进制后8位是00111111,31的二进制后8位是00011111。如果是10^X,就更明显了,保留的都是10进值的后x位,如:{112,12312},如果M是100,也就是10^2 ,那么计算出的哈希值都是12。- 需要说明的是,实践中也是⼋仙过海,各显神通,Java的HashMap采⽤除法散列法时就是2的整数 次幂做哈希表的⼤⼩M,这样玩的话,就不⽤取模,⽽可以直接位运算,相对⽽⾔位运算⽐模更⾼ 效⼀些。但是他不是单纯的去取模,⽐如M是2^16次⽅,本质是取后16位,那么⽤key’= key>>16,然后把key和key'异或的结果作为哈希值。也就是说我们映射出的值还是在[0,M)范围 内,但是尽量让key所有的位都参与计算,这样映射出的哈希值更均匀⼀些即可。所以我们上⾯建 议M取不太接近2的整数次幂的⼀个质数的理论是⼤多数数据结构书籍中写的理论吗,但是实践中, 灵活运⽤,抓住本质。
其他方法
乘法散列法(了解)
- 乘法散列法对哈希表⼤⼩M没有要求,他的大思路第⼀步:⽤关键字K乘上常数A(0<A<1),并抽取出k*A的⼩数部分。第二步:后再用M乘以k*A的⼩数部分,再向下取整。
- h(key) = floor(M ×((A ×key)%1.0)),其中floor表示对表达式进⾏下取整,A∈(0,1),这里最重要的是A的值应该如何设定,Knuth认为A =( − 51)/2 = 0.6180339887....(⻩⾦分割点)比较好。
- 乘法散列法对哈希表⼤⼩M是没有要求的,假设M为1024,key为1234,A=0.6180339887,A*key = 762.6539420558,取⼩数部分为0.6539420558, M×((A×key)%1.0)=0.6539420558*1024= 669.6366651392,那么h(1234)=669。
全域散列法(了解)
- 如果存在⼀个恶意的对⼿,他针对我们提供的散列函数,特意构造出⼀个发⽣严重冲突的数据集, ⽐如,让所有关键字全部落⼊同⼀个位置中。这种情况是可以存在的,只要散列函数是公开且确定 的,就可以实现此攻击。解决⽅法⾃然是⻅招拆招,给散列函数增加随机性,攻击者就⽆法找出确 定可以导致最坏情况的数据。这种⽅法叫做全域散列。
- hab(key) =((a ×key +b)%P)%M,P需要选一个足够大的质数,a可以随机选[1,P-1]之间的任意整数,b可以随机选[0,P-1]之间的任意整数,这些函数构成了⼀个P*(P-1)组全域散列函数组。假设P=17,M=6,a=3,b=4,则h34(8)((3 ×8+4)%17)%6 = 5。
- 需要注意的是每次初始化哈希表时,随机选取全域散列函数组中的⼀个散列函数使⽤,后续增删查 改都固定使⽤这个散列函数,否则每次哈希都是随机选⼀个散列函数,那么插⼊是⼀个散列函数, 查找⼜是另⼀个散列函数,就会导致找不到插⼊的key了。
处理哈希冲突
实践中哈希表⼀般还是选择除法散列法作为哈希函数,当然哈希表⽆论选择什么哈希函数也避免不了 冲突,那么插⼊数据时,如何解决冲突呢?主要有两种方法,开放定址法和链地址法。
开放定址法
在开放定址法中所有的元素都放到哈希表⾥,当⼀个关键字key⽤哈希函数计算出的位置冲突了,则按照某种规则找到⼀个没有存储数据的位置进⾏存储,开放定址法中负载因⼦⼀定是小于1的。这里的规则有三种:线性探测、二次探测、双重探测。
线性探测
- 从发⽣冲突的位置开始,依次线性向后探测,直到寻找到下⼀个没有存储数据的位置为⽌,如果⾛ 到哈希表尾,则回绕到哈希表头的位置。
- h(key) = hash0 = key % M , hash0位置冲突了,则线性探测公式为:
hc(key,i) = hashi = (hash0+i) % M,i = {1,2,3,...,M −1},因为负载因⼦⼩于1,则最多探测M-1次,一定能找到⼀个存储key的位置。- 线性探测的⽐较简单且容易实现,线性探测的问题假设,hash0位置连续冲突,hash0,hash1, hash2位置已经存储数据了,后续映射到hash0,hash1,hash2,hash3的值都会争夺hash3位 置,这种现象叫做群集/堆积。
为什么不能单纯的将hash0++呢?因为一直加就会下标越界,而我们需要的是下标再次从0开始遍历,所以我们需要(hash0+i)%M.
例如:
演示{19,30,5,36,13,20,21,12} 等这⼀组值映射到M=11的表中。
二次探测
- 从发⽣冲突的位置开始,依次左右按⼆次⽅跳跃式探测,直到寻找到下⼀个没有存储数据的位置为 ⽌,如果往右⾛到哈希表尾,则回绕到哈希表头的位置;如果往左⾛到哈希表头,则回绕到哈希表 尾的位置
下面演示{19,30,52,63,11,22} 等这⼀组值映射到M=11的表中
双重散列(了解)
开放定址法代码实现
开放定址法在实践中,不如下⾯讲的链地址法,因为开放定址法解决冲突不管使⽤哪种⽅法,占⽤的 都是哈希表中的空间,始终存在互相影响的问题。所以开放定址法,我们简单选择线性探测实现即 可。
基本结构
要注意的是这⾥需要给每个存储值的位置加⼀个状态标识,否则删除⼀些值以后,会影响后⾯冲突的 值的查找。
查找
我们先取模查找这个值对应的下标,但是也可能不是这个值,因为哈希冲突的缘故,两个不同的值可能映射同一个空间!所以我们需要继续查找下一个值!
HashData<K, V>* Find(const K& key)
{
size_t hash0 = key % _tables.size();
size_t hashi = hash0;
size_t i = 1;
while (_tables[hashi]._state != EMPTY)
{
if (_tables[hashi]._state == EXIST &&
_tables[hashi]._kv.first == key)
{
return &_tables[hashi];
}
//线性探测(查找下一个值)
hashi = (hash0 + i) % _tables.size();
++i;
}
return nullptr;
}
删除
我们已经实现了查找,那么删除函数就比较简单!我们可以直接调用查找函数!
bool Erase(const K& key)
{
HashData<K, V>* ret = Find(key);
if (ret)
{
ret->_state = DELETE;
return true;
}
else
{
return false;
}
}
插入
我们可以直接取模找出需要插入值的下标,但是我们还需要解决负载冲突问题!
解决扩容问题
我们这里设置成如果负载因子大于0.7,我们就扩容!
但是我们不需要单纯地new一组空间,我们可以这样:
但是同时我们要保持哈希表⼤⼩是⼀个质数,第⼀个是质数,2倍后就不是质数了。怎么解决呢?
我们可以这样:
⼀种⽅案就是除法散列中我们讲的JavaHashMap的使⽤2的整数幂,但是计算时不能直接取模的改进⽅法。另外⼀种⽅案是sgi版本的哈希表使⽤的⽅法,给了⼀个近似2倍的质数表,每次去质数表获取扩容后的⼤⼩。
inline unsigned long __stl_next_prime(unsigned long n)
{
// Note: assumes long is at least 32 bits.
static const int __stl_num_primes = 28;
static const unsigned long __stl_prime_list[__stl_num_primes] = {
53, 97, 193, 389, 769,
1543, 3079, 6151, 12289, 24593,
49157, 98317, 196613, 393241, 786433,
1572869, 3145739, 6291469, 12582917, 25165843,
50331653, 100663319, 201326611, 402653189, 805306457,
1610612741, 3221225473, 4294967291
};
const unsigned long* first = __stl_prime_list;
const unsigned long* last = __stl_prime_list + __stl_num_primes;
const unsigned long* pos = lower_bound(first, last, n);
return pos == last ? *(last - 1) : *pos;
}
整合之后:
inline unsigned long __stl_next_prime(unsigned long n)
{
// Note: assumes long is at least 32 bits.
static const int __stl_num_primes = 28;
static const unsigned long __stl_prime_list[__stl_num_primes] = {
53, 97, 193, 389, 769,
1543, 3079, 6151, 12289, 24593,
49157, 98317, 196613, 393241, 786433,
1572869, 3145739, 6291469, 12582917, 25165843,
50331653, 100663319, 201326611, 402653189, 805306457,
1610612741, 3221225473, 4294967291
};
const unsigned long* first = __stl_prime_list;
const unsigned long* last = __stl_prime_list + __stl_num_primes;
const unsigned long* pos = lower_bound(first, last, n);
return pos == last ? *(last - 1) : *pos;
}
template<class K,class V>
class HashTable
{
public:
HashTable()
:_tables(__stl_next_prime(0))
, _n(0)
{}
bool Insert(const pair<K, V>& kv)
{
if (Find(kv.first))
return false;
//负载因子大于0.7就扩容
if (_n * 10 / _tables.size() > 7)
{
HashTable<K, V> newht;
newht._tables.resize(__stl_next_prime(_tables.size() + 1));
for (auto& data : _tables)
{
// 旧表的数据映射到新表
if (data._state == EXIST)
{
newht.Insert(data._kv);
}
}
_tables.swap(newht._tables);
}
size_t hash0 = kv.first % _tables.size();
size_t hashi = hash0;
size_t i = 1;
while (_tables[hashi]._state == EXIST)
{
// 线性探测(继续寻找下一个空间)
hashi = (hash0 + i) % _tables.size();
++i;
}
_tables[hashi]._kv = kv;
_tables[hashi]._state = EXIST;
++_n;
return true;
}
private:
vector<HashData<K, V>> _tables;
size_t _n; // 记录数据个数
};
key不能取模的问题
当key是string/Date等类型时,key不能取模,那么我们需要给HashTable增加⼀个仿函数,这个仿函 数⽀持把key转换成⼀个可以取模的整形,如果key可以转换为整形并且不容易冲突,那么这个仿函数 就⽤默认参数即可,如果这个Key不能转换为整形,我们就需要⾃⼰实现⼀个仿函数传给这个参数,实 现这个仿函数的要求就是尽量key的每值都参与到计算中,让不同的key转换出的整形值不同。string 做哈希表的key⾮常常⻅,所以我们可以考虑把string特化⼀下。
所以我们需要再加一个类模板参数!
仿函数:
template<class K>
struct HashFunc
{
size_t operator()(const K& key)
{
return (size_t)key;
}
};
template<>
struct HashFunc<string>
{
size_t operator()(const string& s)
{
// BKDR
size_t hash = 0;
for (auto ch : s)
{
hash += ch;
hash *= 131;
}
return hash;
}
};
完整代码
template<class K>
struct HashFunc
{
size_t operator()(const K& key)
{
return (size_t)key;
}
};
template<>
struct HashFunc<string>
{
size_t operator()(const string& s)
{
// BKDR
size_t hash = 0;
for (auto ch : s)
{
hash += ch;
hash *= 131;
}
return hash;
}
};
enum State
{
EXIST,
EMPTY,
DELETE
};
template<class K, class V>
struct HashData
{
pair<K, V> _kv;
State _state = EMPTY;
};
inline unsigned long __stl_next_prime(unsigned long n)
{
// Note: assumes long is at least 32 bits.
static const int __stl_num_primes = 28;
static const unsigned long __stl_prime_list[__stl_num_primes] = {
53, 97, 193, 389, 769,
1543, 3079, 6151, 12289, 24593,
49157, 98317, 196613, 393241, 786433,
1572869, 3145739, 6291469, 12582917, 25165843,
50331653, 100663319, 201326611, 402653189, 805306457,
1610612741, 3221225473, 4294967291
};
const unsigned long* first = __stl_prime_list;
const unsigned long* last = __stl_prime_list + __stl_num_primes;
const unsigned long* pos = lower_bound(first, last, n);
return pos == last ? *(last - 1) : *pos;
}
namespace open_address
{
template<class K, class V, class Hash = HashFunc<K>>
class HashTable
{
public:
HashTable()
:_tables(__stl_next_prime(0))
, _n(0)
{}
bool Insert(const pair<K, V>& kv)
{
if (Find(kv.first))
return false;
//负载因子大于0.7就扩容
if (_n * 10 / _tables.size() > 7)
{
HashTable<K, V> newht;
newht._tables.resize(__stl_next_prime(_tables.size() + 1));
for (auto& data : _tables)
{
// 旧表的数据映射到新表
if (data._state == EXIST)
{
newht.Insert(data._kv);
}
}
_tables.swap(newht._tables);
}
size_t hash0 = kv.first % _tables.size();
size_t hashi = hash0;
size_t i = 1;
while (_tables[hashi]._state == EXIST)
{
// 线性探测(继续寻找下一个空间)
hashi = (hash0 + i) % _tables.size();
++i;
}
_tables[hashi]._kv = kv;
_tables[hashi]._state = EXIST;
++_n;
return true;
}
HashData<K, V>* Find(const K& key)
{
size_t hash0 = key % _tables.size();
size_t hashi = hash0;
size_t i = 1;
while (_tables[hashi]._state != EMPTY)
{
if (_tables[hashi]._state == EXIST &&
_tables[hashi]._kv.first == key)
{
return &_tables[hashi];
}
//线性探测(查找下一个值)
hashi = (hash0 + i) % _tables.size();
++i;
}
return nullptr;
}
bool Erase(const K& key)
{
HashData<K, V>* ret = Find(key);
if (ret)
{
ret->_state = DELETE;
return true;
}
else
{
return false;
}
}
private:
vector<HashData<K, V>> _tables;
size_t _n; // 记录数据个数
};
}
链地址法代码实现
解决冲突的思路
开放定址法中所有的元素都放到哈希表⾥,链地址法中所有的数据不再直接存储在哈希表中,哈希表中存储⼀个指针,没有数据映射这个位置时,这个指针为空,有多个数据映射到这个位置时,我们把 这些冲突的数据链接成⼀个链表,挂在哈希表这个位置下⾯,链地址法也叫做拉链法或者哈希桶。
基本框架
插入
取模先找出对应地空间,然后头插即可!
扩容
开放定址法负载因⼦必须⼩于1,链地址法的负载因⼦就没有限制了,可以⼤于1。负载因⼦越⼤,哈 希冲突的概率越⾼,空间利⽤率越⾼;负载因⼦越⼩,哈希冲突的概率越低,空间利⽤率越低;stl中 unordered_xxx的最⼤负载因⼦基本控制在1,⼤于1就扩容,我们下⾯实现也使⽤这个⽅式。
代码
bool Insert(const pair<K, V>& kv)
{
if (Find(kv.first))
return false;
Hash hash;
// 负载因子 == 1时扩容
if (_n == _tables.size())
{
vector<Node*> newTable(__stl_next_prime(_tables.size() + 1));
for (size_t i = 0; i < _tables.size(); i++)
{
Node* cur = _tables[i];
while (cur)
{
Node* next = cur->_next;
// 头插到新表
size_t hashi = hash(cur->_kv.first) % newTable.size();
cur->_next = newTable[hashi];
newTable[hashi] = cur;
cur = next;
}
_tables[i] = nullptr;
}
_tables.swap(newTable);
}
size_t hashi = hash(kv.first) % _tables.size();
// 头插
Node* newnode = new Node(kv);
newnode->_next = _tables[hashi];
_tables[hashi] = newnode;
++_n;
return true;
}
查找
不过多赘述!
Node* Find(const K& key)
{
Hash hash;
size_t hashi = hash(key) % _tables.size();
Node* cur = _tables[hashi];
while (cur)
{
if (cur->_kv.first == key)
{
return cur;
}
cur = cur->_next;
}
return nullptr;
}
删除
不过多赘述!
bool Erase(const K& key)
{
size_t hashi = key % _tables.size();
Node* prev = nullptr;
Node* cur = _tables[hashi];
while (cur)
{
if (cur->_kv.first == key)
{
if (prev == nullptr)
{
// 头结点
_tables[hashi] = cur->_next;
}
else
{
// 中间节点
prev->_next = cur->_next;
}
delete cur;
--_n;
return true;
}
else
{
prev = cur;
cur = cur->_next;
}
}
return false;
}
全部代码
namespace hash_bucket
{
template<class K, class V>
struct HashNode
{
pair<K, V> _kv;
HashNode<K, V>* _next;
HashNode(const pair<K, V>& kv)
:_kv(kv)
, _next(nullptr)
{}
};
template<class K, class V, class Hash = HashFunc<K>>
class HashTable
{
typedef HashNode<K, V> Node;
public:
HashTable()
:_tables(__stl_next_prime(0))
, _n(0)
{}
bool Insert(const pair<K, V>& kv)
{
if (Find(kv.first))
return false;
Hash hash;
// 负载因子 == 1时扩容
if (_n == _tables.size())
{
vector<Node*> newTable(__stl_next_prime(_tables.size() + 1));
for (size_t i = 0; i < _tables.size(); i++)
{
Node* cur = _tables[i];
while (cur)
{
Node* next = cur->_next;
// 头插到新表
size_t hashi = hash(cur->_kv.first) % newTable.size();
cur->_next = newTable[hashi];
newTable[hashi] = cur;
cur = next;
}
_tables[i] = nullptr;
}
_tables.swap(newTable);
}
size_t hashi = hash(kv.first) % _tables.size();
// 头插
Node* newnode = new Node(kv);
newnode->_next = _tables[hashi];
_tables[hashi] = newnode;
++_n;
return true;
}
Node* Find(const K& key)
{
Hash hash;
size_t hashi = hash(key) % _tables.size();
Node* cur = _tables[hashi];
while (cur)
{
if (cur->_kv.first == key)
{
return cur;
}
cur = cur->_next;
}
return nullptr;
}
bool Erase(const K& key)
{
size_t hashi = key % _tables.size();
Node* prev = nullptr;
Node* cur = _tables[hashi];
while (cur)
{
if (cur->_kv.first == key)
{
if (prev == nullptr)
{
// 头结点
_tables[hashi] = cur->_next;
}
else
{
// 中间节点
prev->_next = cur->_next;
}
delete cur;
--_n;
return true;
}
else
{
prev = cur;
cur = cur->_next;
}
}
return false;
}
private:
vector<Node*> _tables; // 指针数组
size_t _n = 0; // 表中存储数据个数
};
}
好了,我们下期见!