深度学习复盘与论文复现F

1、Environment construction

  • macOS 主力建设,目前还有大部分项目都是在windows上运行,现在开始慢慢适应,并进行迁移。

1.1 macos conda

在这里插入图片描述

  • 在macos 尝试用安装win方式安装conda

在这里插入图片描述

  • 初见成效现在选择安装镜像

在这里插入图片描述

1.2 macos PyTorch

  • 在官网选择对应版本即可,注意⚠️选择conda 命令安装,不要选择pip 命令安装。

在这里插入图片描述

conda install pytorch::pytorch torchvision torchaudio -c pytorch

在这里插入图片描述

1.3 iTerm settings

在这里插入图片描述

  • 关于在iTrem 命令行使用conda 命令找不到的情况解决

个人理解:在iTerm中报错,但是在系统自带的终端没有报错。联想到在win中的环境变量的问题

  • 在终端输入以下命令进入“编辑环境变量”
  • 关于vim的使用在Linux学习中已使用
vim ~/.zshrc

最后输入下面代码进行保存

source ~/.zshrc

在这里插入图片描述

1.4 install jupyter

在这里插入图片描述

 pip3 --default-timeout=600 install jupyter

在这里插入图片描述

  • 准备启动jupyter,输入jupyter notebook即可

在这里插入图片描述
启动成功 🚀

在这里插入图片描述
在这里插入图片描述

2、beam search

  • 束搜索Beam Search 是一种启发式图搜索算法,常用于解决序列生成任务,如机器翻译、语音识别、文本摘要等。它是对广度优先搜索的一种优化,通过减少搜索宽度来提高搜索效率,同时尽量保证找到的解的质量。

基本思想
束搜索的基本思想是在每一步扩展中,不是扩展所有可能的节点,而是只扩展有限数目(称为束宽,Beam Width)的最有可能产生最优解的节点。这样,束搜索就可以在有限的计算资源下,尽可能找到最优解或近似最优解。

  • 在序列生成问题中,常用的方法是一个个词元地进行生成,但是先前步生成的词元会影响之后词元的概率分布,为此,我们需要使用搜索算法来得到一个较好的序列

2.1 greedy search

贪心搜索即每个时间步都选择具有最高条件概率的词元。
y t ′ = argmax ⁡ y ∈ Y P ( y ∣ y 1 , … , y t ′ − 1 , c ) y_{t'} = \operatorname*{argmax}_{y \in \mathcal{Y}} P(y \mid y_1, \ldots, y_{t'-1}, \mathbf{c}) yt=yYargmaxP(yy1,,yt1,c)
我们的目标是找到一个最有序列,他的联合概率,也就是每步之间的条件概率的乘积,最大。
∏ t ′ = 1 T ′ P ( y t ′ ∣ y 1 , … , y t ′ − 1 , c ) \prod_{t'=1}^{T'} P(y_{t'} \mid y_1, \ldots, y_{t'-1}, \mathbf{c}) t=1T

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值