Mac下dlib安装

文章作者:Tyan
博客:noahsnail.com  |  CSDN  |  简书

1. dlib的依赖

  • dlib安装需要的依赖有openblas,opencv。可以直接使用brew安装。
$ brew install openblas

$ brew install opencv
  • Mac的X11

X11是执行Unix程序的图形窗口环境。Mac OS X本身的程序是Aqua界面的,但是为了能够兼容unix和linux移植过来的程序(Mac OS X由BSD-UNIX修改而来),比如MatLab,就需要x11窗口环境。

运行dlib需要X11,但Mac目前没有自带X11,需要重新下载安装,下载地址为:https://www.xquartz.org/,下载后直接安装,默认安装目录为/opt/X11,需要在/usr/loca/opt目录下创建软连接,创建命令如下,创建后重启Mac。

$ cd /usr/local/opt

$ ln -s /opt/X11 X11

2. 安装dlib

  • 下载dlib,也可直接去Git下载
git clone https://github.com/davisking/dlib.git
  • 下载后解压,安装dlib
cd dlib/examples
mkdir build
cd build
cmake .. 
cmake --build . --config Release
  • 安装python模块
cd dlib

sudo python setup.py install

python

# 不报错,说明安装python模块成功
import dlib
  • Demo1
cd dlib/examples/build/

#下载face landmark模型
wget http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2

# 解压文件
bunzip2 shape_predictor_68_face_landmarks.dat.bz2

# 执行
./webcam_face_pose_ex

至此,会出现X11窗口,打开Mac摄像头自动检测人脸并标注人脸的landmar。

  • Demo2
# 检测图像上人脸的landmark

./face_landmark_detection_ex shape_predictor_68_face_landmarks.dat ../faces/2008_002506.jpg

image

参考资料

  1. http://www.learnopencv.com/facial-landmark-detection/

  2. http://dlib.net/compile.html

### 安装Python dlib库的具体操作 对于MacBook Pro M1设备而言,安装dlib库并非易事,因为该芯片架构特殊,部分软件可能无法直接兼容。然而,通过Anaconda环境管理工具可以较为顺利地完成这一过程[^1]。 #### 创建特定版本的Conda环境 考虑到M1处理器以及后续可能会遇到的各种依赖关系问题,建议创建一个新的虚拟环境来专门用于此项目。这一步骤能够有效隔离不同项目的依赖冲突,并确保所使用的Python版本是最新的稳定版之一(如3.9),而不是macOS自带的老化版本2.7[^4]。 ```bash conda create -n face_detection_env python=3.9 ``` 激活新建立好的环境: ```bash conda activate face_detection_env ``` #### 安装必要的构建工具CMake 鉴于dlib对外部库cmake存在强依赖性,在正式引入目标模块之前先要保证系统内已正确部署好这个编译器。可以通过Homebrew轻松获取最新发行版;如果尚未安装Homebrew,则需先行访问其官方网站依照指示进行设置[^2]。 利用Homebrew安装CMake: ```bash brew install cmake ``` 确认安装无误后可通过命令`cmake --version`查看当前版本信息。 #### 获取并编译DLib源码 不同于简单调用pip来进行自动化安装的方式,针对Apple Silicon平台上的特殊情况,更推荐从GitHub仓库克隆官方发布的dlib源代码副本,接着依据README.md文档中的指导说明手动执行构建流程。这样做不仅有助于绕过预编译二进制文件不适配ARM架构的问题,还能让用户更好地理解整个安装机制背后的工作原理。 前往终端应用,依次键入下列指令以拉取远程资源并切换至对应目录下: ```bash git clone https://github.com/davisking/dlib.git cd dlib mkdir build; cd build ``` 随后根据个人需求调整配置选项,比如是否启用GPU加速支持等功能特性,再运行下面这条语句触发实际的编译动作: ```bash cmake .. make -j8 ``` 最后把生成的目标产物加入到PYTHONPATH环境变量里去以便于之后导入使用: ```bash export PYTHONPATH=$PWD:$PYTHONPATH ``` 此时理论上已经可以在基于Rosetta 2翻译层之上正常运作的应用程序中加载dlib了,不过为了获得最佳性能表现还是应当优先考虑原生移植方案。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值