智能风控:评分卡建模

模型的本质是对现有业务问题的抽象理解。对评分卡模型进行了分类,本质都是一种由实际问题展开的建模思路,即包含了问题提出和问题抽象两部分。

申请评分卡为解决首次贷款的用户的信用评估问题而建立。

建立行为评分卡则是为了根据贷款期间产生的数据动态调整用户的额度。

建立催收评分卡是为了根据用户的催回难度,合理配置资产处置资源。

特征构造、特征变换、特征筛选、模型评估为模型开发的主要过程。

正式建立评分卡模型前,通常要对模型进行初步设计,并在后续建模中根据实际表现进行调整。

常见的模型设计包括4个步骤:

1)业务问题模式化;

2)因变量设计;

3)数据集及时间段设计;

4)样本选取。

业务问题转化

风险控制相关的业务问题转化,通常指将业务问题抽象为二分类问题,即由于用户不还款会直接造成业务上的损失,因此建立模型预测用户是否会还款。

因变量设计,是指将不可解问题转化为近似可解问题。 是否还款,本身是一种难以定性的问题。随着表现期的增长,用户可能由未还款转化为还款。因此,通常使用某个时间窗口内的用户表现近似为真实表现。逾期天数超过某一阈值则标记为负样本,如逾期超过 3个月(M3+)或逾期超过7天(PD7)。

而具体的阈值确定,则依赖于滚动率分析(Roll Rate Analysis)和账龄分析(Vintage Analysis)。

滚动率就是从某个观察点之前一段时间(观察期)的最坏状态,向观察点之后一段时间(表现期)的最坏状态的发展变化情况。其功能与账龄分析相似度较高。

账龄分析与时间窗口设计

时间窗口分为表现窗口和观测窗口;

表现窗口中的时间称为表现期;观察窗口中的时间称为观察期。

如果定义用户为负样本的依据是到期后的3个月内发生逾期,则称表现期为3个月。

在用户贷款前12个月的数据切片中,抽取用户的历史行为表现作为变量,用于后续建模,则称观察期为12个月。

通常,时间窗口的确定,需要考虑当前数据集的数据是否充足。

如果表现窗口设计过小,则用户的风险暴露不充分,但观察窗口可以变长,因此有更丰富的变量信息用于建模。

如果表现窗口过大,则观察窗口可能过小,以至于变量的效果显著下降。

为了更好地确定时间窗口, 通常使用账龄分析来分析账户成熟期,进而给出表现期与观察期的合理划分。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值