SparkStreaming变慢问题分析

本文分析了SparkStreaming在处理大量数据时遇到的性能问题。由于集群资源分配不均,特别是夜间定时作业占用大量CPU资源,导致SparkStreaming任务Repartition操作受阻,解析速度大幅下降。文章深入探讨了这一现象,并提出了解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SparkStreaming跑着跑着会变慢!
我们的任务是每秒解析1800条数据,而每天早上我去查看解析速度的时候发现每秒只解析了500条左右!

看了下Yarn集群的运行日志,我发现每天晚上凌晨的时候都有一个定时的job在运行!

这导致本来集群资源就不足!3个计算节点每个节点16核128G,一共才48核。我们的SparkStreaming任务 Repartition了一次(提高并发量),这样则Repartition需要CPU 而没有空闲的CPU可用!导致解析速度直线下降!

而当定时的MRJob跑完后,SparkStreaming会重新再次申请CPU,慢慢慢慢的一点点的将积压的数据消费完,解析速度也会提上来的!但是如果定时的Job跑了一个小时,我们的SparkStreamingJob积压了好多好多Job要处理,那么我们的流处理则会一直Delay

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值