基数排序的硬件层面优化实现总结

本文探讨了利用GPU进行局部排序以提升内存带宽利用率的方法,并引用了Intel系统性介绍文章中的CPU实现版本。深入分析了splitradixsort算法,这是GPU实现SIMD式局部排序的关键。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先开个文章保存点找到的资料,写完作业后再写。

利用GPU进行局部排序,提高内存带宽利用的实现版本,intel的系统性介绍文章中有进行引用,intel文章中只详细介绍了CPU实现:
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5161005

非常经典的资料,大多相关优化文章都有引用里面提到的基础技术,GPU实现SIMD式局部排序时,用到的相关算法就是里面的split radix sort示例:
https://www.cs.cmu.edu/~guyb/papers/Ble90.pdf

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值