import torch
import torch.nn.functional as F
import torchvision
import torch.nn as nn
import torchvision.datasets
from torch.nn import Conv2d
from torch.utils.data import Dataset, DataLoader
from torch.utils.tensorboard import SummaryWriter
# 加载CIFAR-10数据集,并且64个图片为一个包
dataset = torchvision.datasets.CIFAR10('E:\\PyCharm_Project\\Pytorch_2.3.1\\PytorchVision\\dataset', train=False,
transform=torchvision.transforms.ToTensor(), download=True)
dataloader = DataLoader(dataset, batch_size=64)
"""
torch.nn里的Conv2d和torch.nn.functional.conv2d输入的形式有所不同;
后者的输入格式是conv2d(input tensor,kernel tensor,bias(偏值,暂时不设置),stride = 1,padding = 0)
而前者的输入格式为(in_channel , out_channel, kernel_size, stride, padding, dilation)
in_channels是输入的图片层数,彩色图片一般为RGB(红绿蓝)三层
kernel_size就是卷积核的大小,n*n
out_channels是输出图片的层数,一般在几十到几百之间,主要看模型和数据集的复杂程度,对于这个数据集个人感觉6个足够了
"""
# 定义一个简单的卷积神经网络模型。
class Zilliax(nn.Module):
def __init__(self):
super(Zil