lc 347. 前 K 个高频元素(

给定一个整数数组,返回出现频率最高的前K个元素。要求时间复杂度优于O(nlogn)。可以利用堆来实现,注意Java的优先级队列在元素达到K时需要手动维护。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

347. 前 K 个高频元素

难度中等552

给定一个非空的整数数组,返回其中出现频率前 高的元素。

 

示例 1:

输入: nums = [1,1,1,2,2,3], k = 2
输出: [1,2]

示例 2:

输入: nums = [1], k = 1
输出: [1]

 

提示:

  • 你可以假设给定的 总是合理的,且 1 ≤ k ≤ 数组中不相同的元素的个数。
  • 你的算法的时间复杂度必须优于 O(n log n) , 是数组的大小。
  • 题目数据保证答案唯一,换句话说,数组中前 k 个高频元素的集合是唯一的。
  • 你可以按任意顺序返回答案。

本题的思路非常好想,不会卡思路,比如:

class Solution {
    public int[] topKFrequent(int[] nums, int k) {
        // 最直观的:
        // 用hashmap统计出现次数,然后根据出现次数排序
        HashMap<Integer,Integer> count=new HashMap<>();
        Comparator<Integer> cmp=(a,b)->{
            return count.get(a)-count.get(b);
        };
        HashSet<Integer> set=new HashSet<>();
        for(int i=0;i<nums.length;i++){
            set.add(nums[i]);
            count.put(nums[i],count.getOrDefault(nums[i],0)+1);
        }
        List<Integer> t=new ArrayList<>(set);
        Collections.sort(t,cmp);
        int[] rs=new int[k];
        for(int i=0;i<k;i++){
            rs[i]=t.get(t.size()-1-i);
        }
        return rs;
    }
}

但是要写出高效的代码还比较困难:上面的时间复杂度是O(nlgn)

本题实际上要求时间复杂度由于nlgn,在获取topk时,可以用堆来做:

这里要注意java的优先级队列,使用的是resizing array,因此不会在队列内元素达到k时自动移除元素,需要我们手动进行判断,如果当前size==k,并且当前元素的出现次数大于堆顶元素的出现次数(注意java的优先级队列,默认情况下是优先级最低的在堆顶),那么首先remove掉当前的堆顶,然后将当前元素添加到堆里

class Solution {
    public int[] topKFrequent(int[] nums, int k) {
        // 最直观的:
        // 用hashmap统计出现次数,然后根据出现次数排序
        HashMap<Integer, Integer> count = new HashMap<>();
        Comparator<Integer> cmp = (a, b) -> {
            return count.get(a) - count.get(b);
        };
        PriorityQueue<Integer> heap = new PriorityQueue<>(cmp);
        for (int i : nums) {
            count.put(i, count.getOrDefault(i, 0) + 1);
        }
        for (int i : count.keySet()) {
            if (heap.size() < k) {
                heap.add(i);
            } else {
                if (count.get(i) <= count.get(heap.peek())) {
                    continue;
                }
                heap.remove();
                heap.add(i);
            }
        }
        int[] rs = new int[k];
        for (int i = 0; i < k; i++) {
            rs[i] = heap.remove();
        }
        return rs;
    }

    public static void main(String[] args) {
        int[] a = {1, 1, 1, 2, 2, 3};
        System.out.println(new Solution().topKFrequent(a, 2));
    }
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值