泊松分布的矩母函数与特征函数

本文深入探讨了概率论中矩母函数与特征函数的概念及其重要性质。矩母函数ψ_X(t)不仅与分布函数一一对应,其导数与随机变量的矩相关;特征函数φ_X(t)同样揭示了分布信息,特别是在泊松分布的例子中,展示了如何计算其矩母函数与特征函数。这些工具在统计推断和随机过程研究中扮演着关键角色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

矩母函数与特征函数

矩母函数与特征函数与分布函数一一对应矩母函数与特征函数与分布函数一一对应
矩母函数

ψX(t)=E(etX)性质:ψX(t)′=E(XetX),当t=0,则为一阶矩(n次导数对应n阶矩)ψ_X(t)=E(e^{tX})\\ 性质:ψ_X(t)'=E(Xe^{tX}),当t=0,则为一阶矩(n次导数对应n阶矩)ψX(t)=E(etX)ψX(t)=E(XetX),t=0,nn
特征函数
φX(t)=E(eitX)φ_X(t)=E(e^{itX})φX(t)=E(eitX)

泊松分布的矩母函数与特征函数

ψX(t)=E(etX)=eλ(et−1)φX(t)=E(eitX)=eλ(e(it)−1)ψ_X(t)=E(e^{tX})=e^{\lambda (e^t-1)}\\ φ_X(t)=E(e^{itX})=e^{\lambda (e^{(it)}-1)}ψX(t)=E(etX)=eλ(et1)φX(t)=E(eitX)=eλ(e(it)1)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值