Max Sum
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 293265 Accepted Submission(s): 69606
Problem Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2
5 6 -1 5 4 -7
7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4
Case 2: 7 1 6
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int a[100010];
int main(){
int t,n,cnt;
scanf( "%d",&t );
for( cnt=1 ; cnt<=t ; cnt++ ){
scanf( "%d",&n );
for( int i=0 ; i<n ; i++ )
scanf( "%d",&a[i] );
int Max = -1001;
int sum = 0;
int s=0,e=0,temp=1;
for( int i=0 ; i<n ; i++ ){
sum += a[i] ;
if( sum > Max ){
Max = sum;
s = temp;
e = i+1;
}
if( sum < 0 ){
sum = 0;
temp = i+2;
}
}
printf( "Case %d:\n%d %d %d\n",cnt,Max,s,e );
if( cnt!=t )
printf( "\n" );
}
return 0;
}