一、开源驱动的大模型底座建设新范式
(一)战略定位:低成本试错与场景验证
在AI大模型技术爆发的背景下,企业面临"高投入门槛"与"场景不确定性"的双重挑战。基于开源工具构建轻量化原型系统,成为平衡创新成本与风险的最优路径。本方案聚焦万元级投入、两周级部署的可行性,目标是打造具备文本生成、语义理解、工具调用能力的通用底座,支持智能客服、文档分析、自动化报告等垂直场景的快速验证。
(二)全栈技术选型:工具链的协同进化
模块 | 核心工具 | 版本 | 创新组合优势 |
---|---|---|---|
模型层 | Hugging Face Transformers | 4.30.0 | 1000+预训练模型+自定义训练流程 |
调度层 | Langchain | 0.0.264 | 链式调用+记忆管理+工具集成 |
< |