【LLaMA 3实战】7、LLaMA 3多轮推理应用实战:对话系统与自动化任务建模

在这里插入图片描述

一、多轮推理核心能力与系统架构

(一)对话系统的状态感知架构

LLaMA 3的多轮推理能力通过状态感知型引擎实现,其核心架构如下:

在这里插入图片描述

状态路由器通过语义分析确定对话走向,实现代码如下:

def route_state(input_text, history):
    """判断对话状态类型:新任务/任务延续/普通聊天"""
    if "继续" in input_text or "上次" in input_text:
        return "CONTINUE_TASK"
    elif any(keyword in input_text for keyword in ["新建", "开始", "流程"]):
        return "NEW_TASK"
    else:
        return "CHAT"

记忆检索模块结合短期对话历史与长期记忆库,实现跨对话上下文关联:

# 基于向量数据库的记忆检索实现
class MemoryRetriever:
    def __init__(self, vector_db_path):
        self.db = VectorDB.load(vector_db_path)  # 假设VectorDB为自定义向量数据库类
    
    def retrieve_relevant(self, query, history, top_k=3):
        # 提取最近3轮对话作为短期记忆
        recent_context = "\n".join(history[-3:]) if history else ""
        # 从长期记忆库检索相关信息
        long_term_memory = self.db.search(query, top_k=top_k)
        # 合并记忆上下文
        return f"{
     recent_context}\n{
     long_term_memory}"

(二)自动化任务建模的核心框架

自动化任务通过领域专用语言(DSL)定义,结合状态机执行引擎实现流程控制。以下是电商订单审核任务的DSL示例:

# 电商订单审核自动化任务定义
name: 订单风险审核流程
steps:
  - step: 1
    action: extract_data
    params:
      fields: [订单号, 金额, 收货地址, 支付方式]
    output: $order_info
    
  - step: 2
    action: risk_check
    params:
      rules:
        - 金额 > 10000 → 高风险
        - 收货地址 in [高风险地区列表] → 人工审核
        - 支付方式为"匿名支付" → 中等风险
    output: $risk_grade
    
  - step: 3
    action: decision_making
    params:
      conditions:
        - if: $risk_grade == "高风险"
          then: notify_auditor
          args: ["需人工复核订单风险"]
        - elif: $risk_grade == "中等风险"
          then: add_watchlist
        - else: auto_approve
    output: $final_decision

任务执行引擎通过LLaMA 3解析DSL并驱动流程,核心实现如下:

class TaskExecutor:
    def __init__(self, llm_model="llama3-70b"):
        """初始化任务执行引擎,绑定LLM模型"""
        self.llm = OllamaLLM(model=llm_model)  # 假设OllamaLLM为封装的LLM接口
    
    def execute_step(self, step_def, context):
        """执行单个任务步骤,返回输出结果"""
        prompt = f"""
        [自动化任务执行指令]
        任务步骤定义: {
     step_def}
        当前上下文: {
     context}
        
        执行要求:
        1. 严格按action类型处理数据
        2. 输出必须为JSON格式,包含"output"字段
        3. 确保参数解析准确,如有缺失需提示
        """
        response = self.llm.generate(prompt, temperature=0.1)
        return json.loads(response)["output"]
    
    def run_workflow(self, task_dsl):
        """运行完整任务工作流,返回最终上下文"""
        context = {
   }
        for step in task_dsl["steps"]:
            step_output = self.execute_step(step, context)
            context.update(step_output)
            # 记录任务进度(可选)
            print(f"步骤{
     step['step']}完成,当前上下文: {
     context.keys()}")
        return context

二、对话系统工程实现与优化策略

(一)多轮对话状态维护技术

在客服场景中,对话状态维护通过历史截取与摘要实现,核心代码如下:

def maintain_dialogue_state(history, user_input, max_turns=5):
    """维护对话状态,截取最近max_turns轮对话"""
    # 构建对话历史字符串(每轮包含用户和客服发言)
    dialogue_history = "\n".join(history[-2*max_turns:]) if history else ""
    # 添加当前用户输入
    dialogue_context = f"{
     dialogue_history}\n用户: {
     user_input}\n客服:"
    
    # 生成响应
    response = self.llm.chat(
        messages=[
            {
   "role": "system", "content": "你是客服助手,用简洁中文回答"},
            {
   "role": "user", "content": dialogue_context}
        ]
    )
    
    # 更新对话历史
    new_history 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无心水

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值