一、多轮推理核心能力与系统架构
(一)对话系统的状态感知架构
LLaMA 3的多轮推理能力通过状态感知型引擎实现,其核心架构如下:
状态路由器通过语义分析确定对话走向,实现代码如下:
def route_state(input_text, history):
"""判断对话状态类型:新任务/任务延续/普通聊天"""
if "继续" in input_text or "上次" in input_text:
return "CONTINUE_TASK"
elif any(keyword in input_text for keyword in ["新建", "开始", "流程"]):
return "NEW_TASK"
else:
return "CHAT"
记忆检索模块结合短期对话历史与长期记忆库,实现跨对话上下文关联:
# 基于向量数据库的记忆检索实现
class MemoryRetriever:
def __init__(self, vector_db_path):
self.db = VectorDB.load(vector_db_path) # 假设VectorDB为自定义向量数据库类
def retrieve_relevant(self, query, history, top_k=3):
# 提取最近3轮对话作为短期记忆
recent_context = "\n".join(history[-3:]) if history else ""
# 从长期记忆库检索相关信息
long_term_memory = self.db.search(query, top_k=top_k)
# 合并记忆上下文
return f"{
recent_context}\n{
long_term_memory}"
(二)自动化任务建模的核心框架
自动化任务通过领域专用语言(DSL)定义,结合状态机执行引擎实现流程控制。以下是电商订单审核任务的DSL示例:
# 电商订单审核自动化任务定义
name: 订单风险审核流程
steps:
- step: 1
action: extract_data
params:
fields: [订单号, 金额, 收货地址, 支付方式]
output: $order_info
- step: 2
action: risk_check
params:
rules:
- 金额 > 10000 → 高风险
- 收货地址 in [高风险地区列表] → 人工审核
- 支付方式为"匿名支付" → 中等风险
output: $risk_grade
- step: 3
action: decision_making
params:
conditions:
- if: $risk_grade == "高风险"
then: notify_auditor
args: ["需人工复核订单风险"]
- elif: $risk_grade == "中等风险"
then: add_watchlist
- else: auto_approve
output: $final_decision
任务执行引擎通过LLaMA 3解析DSL并驱动流程,核心实现如下:
class TaskExecutor:
def __init__(self, llm_model="llama3-70b"):
"""初始化任务执行引擎,绑定LLM模型"""
self.llm = OllamaLLM(model=llm_model) # 假设OllamaLLM为封装的LLM接口
def execute_step(self, step_def, context):
"""执行单个任务步骤,返回输出结果"""
prompt = f"""
[自动化任务执行指令]
任务步骤定义: {
step_def}
当前上下文: {
context}
执行要求:
1. 严格按action类型处理数据
2. 输出必须为JSON格式,包含"output"字段
3. 确保参数解析准确,如有缺失需提示
"""
response = self.llm.generate(prompt, temperature=0.1)
return json.loads(response)["output"]
def run_workflow(self, task_dsl):
"""运行完整任务工作流,返回最终上下文"""
context = {
}
for step in task_dsl["steps"]:
step_output = self.execute_step(step, context)
context.update(step_output)
# 记录任务进度(可选)
print(f"步骤{
step['step']}完成,当前上下文: {
context.keys()}")
return context
二、对话系统工程实现与优化策略
(一)多轮对话状态维护技术
在客服场景中,对话状态维护通过历史截取与摘要实现,核心代码如下:
def maintain_dialogue_state(history, user_input, max_turns=5):
"""维护对话状态,截取最近max_turns轮对话"""
# 构建对话历史字符串(每轮包含用户和客服发言)
dialogue_history = "\n".join(history[-2*max_turns:]) if history else ""
# 添加当前用户输入
dialogue_context = f"{
dialogue_history}\n用户: {
user_input}\n客服:"
# 生成响应
response = self.llm.chat(
messages=[
{
"role": "system", "content": "你是客服助手,用简洁中文回答"},
{
"role": "user", "content": dialogue_context}
]
)
# 更新对话历史
new_history