一、技术突破方向:从RAG到内生检索的架构革新
(一)神经检索与生成的深度融合
传统RAG系统中检索器与生成器的分离架构正被LLaMA 3的MoE(混合专家)架构彻底重构,形成"神经元激活即检索"的内生式知识调用机制:
动态专家路由检索机制
LLaMA 3的MoE架构可将特定领域知识映射至专家神经元分区,实现语义触发的精准检索:
# 伪代码:MoE路由触发领域知识检索
def moe_route_and_retrieve(query, model):
# 1. 文本输入触发专家路由
expert_scores = model.moe_router(query)
# 2. 激活高评分专家对应的知识子空间
active_expert = max(expert_scores, key=expert_scores.get)
knowledge_subspace = get_knowledge_subspace(active_expert)
# 3. 在专属知识子空间执行检索
retrieved_context = vector_db.search(
query,
subspace=knowledge_subspace,
top_k=3
)
# 4. 融合检索结果生成回答
response = model.generate(
query,
context=retrieved_context
)
return response
(二)多模态检索的跨越式发展
1. 图文跨模态联合检索
通过CLIP与LLaMA 3的联合训练,构建统一的跨模态语义空间:
# 跨模态检索实现框架
def multimodal_retrieval(query, image=None):
# 1. 文本编码
text_emb = llama3.encode(query)
# 2. 图像编码(如有)
if image:
image_emb = clip_model.encode_image(image)
# 3. 跨模态融合
hybrid_emb = (text_emb + image_emb) / 2
query_emb = hybrid_emb
else:
query_emb = text_emb
# 4. 多模态向量库检索
results = multimodal_db.search(
query_emb,
modality=("text" if not image else "image-text"),
top_k=5
)
return results
2. 视频时序语义检索
基于LLaMA 3的长上下文理解能力,构建视频帧级别的时序索引: