随着大模型参数规模从数十亿迈向千亿,单卡部署已无法满足推理与训练需求,分布式技术成为释放大模型能力的核心支撑。
本文聚焦DeepSeek系列大模型(7B/70B)的分布式部署,系统拆解vLLM单机多卡、Kubernetes+DeepSpeed集群、Ray+vLLM跨节点三种主流方案,结合完整代码示例与架构图表,详解从环境搭建到性能调优的全流程,为工业级大模型部署提供可直接落地的解决方案。
一、大模型分布式部署核心架构与关键技术
DeepSeek等大模型的分布式部署本质是解决计算资源分配与跨设备通信两大核心问题。其架构设计需平衡模型分片策略、通信效率与资源利用率,核心技术栈如图1所示:
图1:大模型分布式部署核心技术栈
1.1 模型并行策略:突破单卡显存限制
大模型参数规模(如DeepSeek-70B约需140GB显存)远超单卡容量,需通过并行策略拆分模型:
- 张量并行(Tensor Parallelism):
将模型