【DeepSeek实战】5、DeepSeek大模型分布式部署:从vLLM到K8s+Ray的生产级实践

在这里插入图片描述

随着大模型参数规模从数十亿迈向千亿,单卡部署已无法满足推理与训练需求,分布式技术成为释放大模型能力的核心支撑。

本文聚焦DeepSeek系列大模型(7B/70B)的分布式部署,系统拆解vLLM单机多卡、Kubernetes+DeepSpeed集群、Ray+vLLM跨节点三种主流方案,结合完整代码示例与架构图表,详解从环境搭建到性能调优的全流程,为工业级大模型部署提供可直接落地的解决方案。

一、大模型分布式部署核心架构与关键技术

DeepSeek等大模型的分布式部署本质是解决计算资源分配跨设备通信两大核心问题。其架构设计需平衡模型分片策略、通信效率与资源利用率,核心技术栈如图1所示:
在这里插入图片描述

图1:大模型分布式部署核心技术栈

1.1 模型并行策略:突破单卡显存限制

大模型参数规模(如DeepSeek-70B约需140GB显存)远超单卡容量,需通过并行策略拆分模型:

  • 张量并行(Tensor Parallelism)
    将模型
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无心水

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值