【DeepSeek实战】21、Google A2A协议完全指南:从核心原理到多智能体协同实战

在这里插入图片描述

引言:智能体时代的“TCP/IP协议”

当一个体育智能体需要调用地图智能体获取场馆位置,当一个医疗诊断智能体需要请求影像分析智能体解读CT片,当一个旅行规划智能体需要协同航班、酒店、日历多个智能体完成行程安排——这些跨智能体协同的场景,都需要一套统一的通信标准。

Google在2024年提出的A2A(Agent-to-Agent)协议,正是为解决“智能体孤岛”问题而生,被业内称为“智能体世界的TCP/IP”。

本文整合两大技术文档的核心精华,系统拆解A2A协议的设计哲学、实现原理、实战步骤与应用场景。无论是开发者还是技术决策者,都能通过本文掌握“让不同智能体无缝协作”的核心技术,从理论到代码全面落地跨智能体系统。

一、A2A协议核心解析:为什么它是智能体协同的基石?

A2A协议的本质是智能体间通信的通用语言,它定义了智能体如何发现彼此、传递任务、交换数据,最终实现跨系统协作。要理解其价值,需从协议定位、核心概念和解决的痛点入手。

1.1 协议定位与行业价值

在A2A协议出现前,智能体间的协作面临三大痛点:

  • 通信壁垒:不同框架开发的智能体(如LangChain Agent、自主研发Agent)无法直接对话,需为每对智能体开发专属适配层;
  • 能力不透明:智能体无法知道其他智能体的功能(如“能否查询航班”“是否支持支付”),导致调用盲目性;
  • 协作无规范:任务状态(如“已接受”“执行中”“失败”)缺乏统一标准,跨智能体流程难以追踪。

A2A协议通过标准化解决这些问题,目前已有LangChain、MongoDB、火山引擎等50+服务商接入,形成初步生态。其与MCP(地图控制平台)的定位差异如下:

标准化工具调用
标准化智能体通信
MCP协议
单个智能体能力扩展
A2A协议
多智能体协同生态
  • MCP:聚焦“智能体与工具的交互”(类似API规范),解决单个智能体的能力扩展问题;
  • A2A:聚焦“智能体与智能体的交互”(类似HTTP协议),解决多智能体的协同问题。

1.2 核心概念:智能体协作的“身份证”与“契约”

A2A协议通过两个核心概念实现标准化通信:Agent Card(智能体名片)Task(任务契约)

(1)Agent Card:智能体的“能力说明书”

Agent Card是智能体的数字化身份标识,包含其名称、支持的技能(功能)、通信地址等信息,让其他智能体能快速了解其能力。

{
   
  "name": "绩效管理智能体",
  "version": "1.0.2",  // 版本号,用于兼容性管理
  "description": "查询员工绩效分数与评级",
  "endpoint": "http://perf-agent.example.com:10000",  // 通信地址
  "skills": [
    {
   
      "id": "query_perf_score",  // 技能唯一标识
      "name": "绩效分数查询",
      "description": "查询指定员工的月度/年度绩效分数,支持按姓名检索",
      "examples": ["张三2024年Q1的绩效分是多少", "李四的年度评级是什么"]
    },
    {
   
      "id": "query_team_ranking",
      "name": "团队绩效排名",
      "description": "返回指定部门的绩效排名列表"
    }
  ],
  "supported_content_types": ["text/plain", "application/json"]  // 支持的数据格式
}

核心作用

  • 能力 discovery:其他智能体通过Agent Card快速判断“该智能体能否解决我的问题”;
  • 通信路由:提供接入地址,避免智能体间“找不到彼此”;
  • 版本兼容:通过version字段处理不同版本智能体的交互逻辑。
(2)Task:智能体间的“协作契约”

Task是智能体间传递的任务载体,包含任务内容、状态、结果等信息,通过状态机管理协作流程。

Task状态机

CREATED(创建) → ACCEPTED(已接受) → PROCESSING(处理中) → COMPLETED(完成)
                   ↘ FAILED(失败) ↗        ↗
  • CREATED:任务已创建但未被目标智能体接收;
  • ACCEPTED:目标智能体已接收任务并开始处理;
  • PROCESSING:任务执行中(可选状态,用于长耗时任务);
  • COMPLETED:任务成功完成,返回结果;
  • FAILED:任务执行失败(如参数错误、权限不足),返回错误原因。

Task数据结构示例

{
   
  "task_id": "t-7f92e1b3",  // 任务唯一ID
  "sender": "did:a2a:company:hr-agent",  // 发送方智能体ID(DID格式)
  "recipient": "did:a2a:company:perf-agent",  // 接收方智能体ID
  "message": {
   
    "parts": [{
   "type": "text", "text": "查询张三2024年Q2的绩效分数"}]
  },
  "status": "ACCEPTED",
  "created_at": "2024-07-01T10:30:00Z",
  "updated_at": "2024-07-01T10:30:05Z",
  "ttl": 300  // 任务超时时间(秒),超时未处理自动失败
}

二、协议实现原理:C/S架构与通信流程全解析

A2A协议采用客户端-服务器(C/S)架构:提供服务的智能体作为Server,调用服务的智能体作为Client。通信流程遵循“发现→认证→任务传递→结果返回”的标准路径。

2.1 通信流程全景图

在这里插入图片描述

关键步骤解析

  1. 智能体发现:Client通过Server的Endpoint请求Agent Card,了解其是否支持目标技能;
  2. 认证授权:Server通过OAuth 2.0验证Client的调用权限(如“是否允许查询绩效”);
  3. 任务处理:Server接收任务后,调用本地工具(如数据库、API)完成处理;
  4. 状态同步:Server实时更新任务状态,Client可通过轮询或事件通知获取进度。

协议细节补充

协议实现关键点
RESTful GET
OAuth 2.0
JSON Schema
状态码+数据
Agent Card规范
发现机制
Scope权限控制
认证流程
参数标准化
任务传递
错误重试机制
结果返回

通信协议规范

在这里插入图片描述

最佳实践建议:

  1. 服务发现层:建议部署Agent Registry实现智能体自动发现
  2. 认证优化:采用JWT替代OAuth 2.0简化流程
  3. 状态管理
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无心水

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值