【PyTorch实战:概念】2、PyTorch深度学习指南:从环境配置到核心概念与实战应用

在这里插入图片描述

一、PyTorch:AI界的顶流框架

1.1 PyTorch的崛起与发展历程

在人工智能这个快速发展的领域中,深度学习框架的竞争如同科技界的"明星角逐",而PyTorch无疑是当前最耀眼的"顶流明星"。从2016年由Facebook人工智能研究院(FAIR)推出至今,PyTorch已经从一个挑战者成长为深度学习领域的主导力量。

PyTorch的成功并非偶然,而是其革命性设计理念的必然结果。与早期主流框架TensorFlow的静态计算图不同,PyTorch引入了**动态计算图(Define-by-Run)**的概念,这使得模型构建和调试变得异常直观和灵活。研究人员可以像编写普通Python代码一样构建深度学习模型,并能够使用熟悉的调试工具进行逐行调试。

PyTorch发展历程
静态计算图
催生需求
动态计算图
结果
2016: PyTorch初始版本
2018: 1.0稳定版发布
2020: 研究领域80%+占有率
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无心水

您的鼓励就是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值