论文题目:Bag-of-local-features Model for Multi-modal Face Anti-spoofing
论文地址:FaceBagNet
代码地址:https://github.com/SeuTao/CVPR19-Face-Anti-spoofing
摘要
人脸反欺骗检测是人脸生物识别系统中的一个重要环节。最新的(SOTA)基于卷积神经网络(CNNs)的方法在该领域取得了良好的效果。然而,以前的工作集中在单一的模态数据和数量有限的数据。最近发布的CASIA-SURF数据集是最大的数据集,包含1000名受试者和21000个视频剪辑,有3种模态(RGB、Depth和IR)。在本文中,我们提出了一个称为FaceBagNet的多流CNN架构来充分利用这一数据。FaceBagNet的输入是patch-level图像,有助于提取特定于欺骗的判别信息。此外,为了防止过拟合和更好地学习融合特征