机器学习算法/模型——阶段性总结(4)更高层次

本文深入探讨了机器学习中的关键概念,包括特征空间的理解、BOW模型在图像特征表示的应用、算法模型的假设必要性、过拟合的本质、SVM在m<n情况下的解决方案、最小二乘法与最大似然估计的等价性、损失函数的引入及其在求解线性方程组无解问题中的作用,以及常见的回归损失函数和优化算法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

关于数据

特征空间

原来图像特征的表示也可以理解为 BOW(bag of words)

博文:机器学习中的特征空间
原 PPT 资源:点击

在这里插入图片描述

在这里插入图片描述

关于算法模型

为什么需要假设?因为实际不存在完美的预测模型。

最小二乘法 是线性模型的通用优化方法,
梯度下降只不过是其中一种,为了解决求解不了方程的时候(高维的线性模型甚至非线性模型,目标函数往往并不是全局凸函数,因此不能继续使用导数为零的方式进行最优解求解)

过拟合的问题本质上是方程组的解有无穷多个,而算法模型选择了其中较为复杂的一种。

根据奥卡姆剃刀原理,越简单的模型在未知的样本上的泛化能力越好。

SVM解决了线性模型解决不了的,当m<n时候的情况,

当随机噪声服从正态分布时,最小二乘与最大似然等价。

损失函数(与距离度量)

为了解决基于原始输入样本数据构成的线性方程组无解的问题,我们引入了损失函数,之后问题转换为了求解损失函数的参数解。

最常用的5个回归损失函数

优化算法

模型评估

模型评估指标

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值