思考·感悟——学习算法背后的所代表的“思想”

一点学习经验的记录,核心是:本质学习或者说学习“思维”

学习经典算法,了解其原理、实现和吃透其实是不太够的,
更多地还要关注其背后所用到的思想和精髓

比如传统算法里面的PCA ,其背后代表的降维思维
比如什么样的情况下可以降维?
如果需要重新设计一个降维方法的话,应该从哪些方面去考虑
什么样的条件是让这个降维是可行的?
一个好的降维、一个成功的降维,它应该满足什么条件

比如学习树模型,掌握随机森林或者说 GBDT 算法并不是最重要的,而是在这两类模型中
蕴含的集成学习思维
同理,也应该思考,什么样的情况下可以集成?
除了树模型,还有其他的算法可以用到集成?
什么样的模型不能集成?
一个好的集成应该从哪些方面去考虑?
一个好的集成应该满足那哪些条件?
不同的模型应该如何去集成才能达到它最好的效果?

再比如说,贝叶斯学派和统计学派,
重点是要去关注为什么会有这两种学派?
他们考虑问题的角度有什么不同?
而不是每种学派有那些算法?

再比如深度学习…

摘自B 站某up,值得新手反复观看、思考。

传送门

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值