- 博客(21)
- 收藏
- 关注
原创 LeetCode分类刷题
注意r起点为Math.sqrt(target),因为target可为int中最大值2^31-1故,l^2+r^2可出现大于int。双指针去寻找两数平方和未target。注意用long存储减少溢出。
2022-09-05 17:16:01
308
转载 Linux命令(转)
等同于tail -f -n 10(貌似tail -f或-F默认也是打印最后10行,然后追踪文件),与tail -f不同的是,如果文件不增长,它不会去访问磁盘文件,所以tailf特别适合那些便携机上跟踪日志文件,因为它减少了磁盘访问,可以省电。等同于–follow=name --retry,根据文件名进行追踪,并保持重试,即该文件被删除或改名后,如果再次创建相同的文件名,会继续追踪。tailf、tail -f、tail -F三者区别(转)若想退出tail命令,直接使用【Ctrl】+【C】。...
2022-08-25 17:17:13
1145
原创 牛客面试高频榜单(第二组)难度:简单&中等
StringBuilder可通过deleteCharAt(index)删除对应位置的元素。ArrayList 的 toString方法结果是将元素用逗号隔开的字符串。1、找到对称点,将后面的链表反转 2、再继续进行比较。空间复杂度比较小的一种方式。..................
2022-08-06 10:40:03
292
原创 面试必刷TOP101 【链表】
(1)反转链表(2) 链表内指定区间反转注意一种情况,从第一个节点的位置开始就需要反转。加一个头节点让操作更方便。(3) 链表中的节点每k个一组翻转和上一个基本思路一致,但本次要进行多次反转。递归实现更简便...............
2022-07-08 15:06:59
263
原创 剑指offer刷题(中等等级)
(1)二维数组中的查找(2)重建二叉树利用Arrays.copyOfRange(n,from,to)进行数组截取,实现起来更简便。(3)二叉树的下一个结点 (4)矩阵中的路径更简便的代码:1、将矩阵路径经过时改为‘.’,使用完再回复为原值。来代替flag矩阵记12、关于i,j是否超届的判断均放到最开始的if中用,超届则直接false;3、易错点,到index最后一位匹配上就直接给true(5)剪绳子 动态规划的思想是一定要从最小子问题开始求解,之后更大的问题可以应用其子问题的结果。若该子问题出
2022-06-05 23:59:46
1439
原创 剑指offer刷题(简单等级)
(1)斐波那契数列(2)数组中重复的数字描述在一个长度为n的数组里的所有数字都在0到n-1的范围内。 数组中某些数字是重复的,但不知道有几个数字是重复的。也不知道每个数字重复几次。请找出数组中任意一个重复的数字。 例如,如果输入长度为7的数组[2,3,1,0,2,5,3],那么对应的输出是2或者3。存在不合法的输入的话输出-1数据范围:0≤n≤10000 0≤n≤10000进阶:时间复杂度O(n) O(n) ,空间复杂度O(n) O(n)思路的突破点:数据都在0~n-1的范围内,即若
2022-05-23 22:37:12
142
原创 Could not fetch URL https://pypi.org/simple/pytest-html/: There was a problem confirming the ssl cer
Could not fetch URL https://pypi.org/simple/pytest-html/: There was a problem confirming the ssl certificate: HTTPSConnectionPool(host='pypi.org', port=443): Max retries exceeded with url: /simple/pytest-html/ (Caused by SSLError("Can't connect to HTTPS UR
2022-04-27 15:44:42
1467
原创 数据库安装问题、重置密码
(1)MySQL的accounts and roles问题解决方法怎么输入都不对的情况下,点击cancel,进入remove。现在对应的服务。(2)MySQL error 1042: Unable to connect to any of the specified MySQL hosts.win+r打开运行,输入services.msc打开服务,找到安装MySQL时添加的服务名,一般8.0版本的MySQL默认是MySQL80,双击打开,登录选项卡下将选择的此账户改为选择本地系统账户。.
2022-04-07 15:14:43
2170
原创 el-admin框架下快速构建项目
1、JDK:1.8+安装教程:Java 开发环境配置 | 菜鸟教程2、Redis 3.0+安装教程:Redis 安装 | 菜鸟教程3、Maven 3.0+(可以直接使用idea或者vscode工具的环境)安装教程:Maven 环境配置 | 菜鸟教程4、MYSQL 5.5.0+ 其他版本也可安装教程:MySQL 安装 | 菜鸟教程5、Node v10+ (最好使用 12,高版本可能会有问题)安装教程:Node.js 安装配置 | 菜鸟教程...
2022-02-22 15:13:20
834
原创 面经中的算法题
(1)我手中有一堆扑克牌, 但是观众不知道它的顺序。1、第一步, 我从牌顶拿出一张牌, 放到桌子上。2、第二步, 我从牌顶再拿一张牌, 放在手上牌的底部。3、第三步, 重复第一步、第二步的操作, 直到我手中所有的牌都放到了桌子上。最后, 可以看到桌子上牌的顺序是:(牌底部)1,2,3,4,5,6,7,8,9,10,11,12,13(牌顶部)问, 刚开始拿在手里的牌的顺序是什么?其实这一题很简单,我们只需要将这个操作倒着来一遍就完事了。import java.util.Lin
2021-11-02 21:05:31
209
原创 剑指Offer刷题
最小的k个数(1)利用Java中的优先队列,堆排序思想import java.util.*;public class Solution { public ArrayList<Integer> GetLeastNumbers_Solution(int [] input, int k){ Queue<Integer> priorityQueue = new PriorityQueue<>(new Comparator<Integer
2021-07-25 23:06:19
210
原创 防御。。。。
(1)Structure-Preserving Progressive Low-rank Image Completion for Defending Adversarial Attacks深度神经网络通过分析局部图像细节并沿着推理层总结其信息来识别目标,从而得出最终的决策。正因为如此,它们容易受到对抗性的攻击。输入图像中的小而复杂的噪声会沿着网络推理路径累积,并在网络输出中产生错误的决策。另一方面,人眼是基于物体的整体结构和语义线索来识别物体的,而不是基于图像的局部纹理。正因为如此,人眼仍然可以清楚地
2021-06-28 22:52:33
885
1
原创 2021-06-25
(1)首次摆脱对梯度的依赖,CMU等开源Score-CAM:基于置信分数的视觉可解释性CAM已经发展出了好几种方法,有CAM, GradCAM, GradCAM++, SmoothGradCAM++, ScoreCAM, SSCAM, ISCAM等
2021-06-25 11:18:28
230
原创 检测。。。。
综述Adversarial Example Detection for DNN Models: A Review2021(1)Detecting Adversarial Image Examples in Deep Neural Networks with Adaptive Noise Reduction在本文中提出了一种直接检测对抗图像实例的方法,该方法可以直接部署到未经修改的现成DNN模型中。我们把对图像的扰动看作是一种噪声,并引入两种经典的图像处理技术——标量量化和平滑空间滤波来降低其影响
2021-06-24 11:16:32
878
转载 关于交叉熵损失函数Cross Entropy Loss
1、说在前面最近在学习objectdetection的论文,又遇到交叉熵、高斯混合模型等之类的知识,发现自己没有搞明白这些概念,也从来没有认真总结归纳过,所以觉得自己应该沉下心,对以前的知识做一个回顾与总结,特此先简单倒腾了一下博客,使之美观一些,再进行总结。本篇博客先是对交叉熵损失函数进行一个简单的总结。2、 交叉熵的来源2.1、信息量交叉熵是信息论中的一个概念,要想了解交叉熵的本质,需要先从最基本的概念讲起。我们先来看看什么是信息量:事件A:巴西队进入了2018世界杯决赛圈.
2021-05-21 10:35:22
1242
原创 深度学习对抗攻击的学习资料
1、该领域最具影响力的学者Ian Goodfellow和Nicolas Papernot写的cleverhans博客:http://www.cleverhans.io/2、2013年,Google研究员Szegedy等人在题为《Intriguing properties of neural networks(神经网络有趣的特性)》的论文中指出了神经网络的两个有趣的特性:其一是神经网络中包含语义信息的部分并不是在每个独立的神经元,而是整个空间;其二是神经网络学习到的从输入到输出的映射在很大程度上是不连续的
2021-05-18 17:03:08
409
原创 吴恩达机器学习编程作业实验二
吴恩达机器学习实验二Visualizing the datafunction plotData(X, y)%PLOTDATA Plots the data points X and y into a new figure % PLOTDATA(x,y) plots the data points with + for the positive examples% and o for the negative examples. X is assumed to be a Mx2
2021-03-23 16:03:01
284
原创 吴恩达机器学习编程作业实验一
吴恩达机器学习编程作业实验一:Feature normalizationfunction [X_norm, mu, sigma] = featureNormalize(X)%FEATURENORMALIZE Normalizes the features in X % FEATURENORMALIZE(X) returns a normalized version of X where% the mean value of each feature is 0 and the st
2021-03-22 15:30:47
463
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人