举个栗子:
培训一位新来的实习生(AI)
一、提示词工程 (Prompt Engineering):给实习生写一份极其详细、一步不差的操作说明书, 确保他/她第一次做某个具体任务时就能做对、做好。
How:
1.绞尽脑汁把指令写得超级清晰、无歧义:“小张,请打开‘销售数据Q2.xlsx’文件,找到标着‘华东区’的工作表,把B列到F列的数据复制出来,粘贴到一个新文件里,文件命名为‘华东区Q2数据备份.csv’,然后发邮件给王经理,邮件标题写‘华东区Q2销售数据备份’,正文写‘王经理您好,附件是您要的数据备份,请查收。’”
2..可能还要在说明书里塞几个例子:“比如上次小李做的那个报表,格式就很好,你就照那个格式做。”
3.或者用点小技巧引导他思考:“你先想想,要备份数据,第一步应该干什么?第二步呢?...”
核心操作:解构那一次指令本身的语言和结构,让它尽可能完美地引导AI完成单一、特定的任务。
痛点:
任务一复杂,说明书就得写巨长无比,实习生可能看晕了。
任务稍微变一变(比如这次要备份华南区数据),你就得重写一份几乎全新的说明书。
实习生没有记忆,下次做类似任务,你还得从头再来一遍。
任务需要查资料(公司数据库)、用工具(邮件系统)?你得在说明书里写死怎么用,或者让他自己摸索(容易出错)。
二、上下文工程 (Context Engineering):给实习生配备了一个智能工作台 + 万能小秘书,让实习生能独立、连续、灵活地处理一系列复杂任务,像老员工一样。
How:
1.首先会告诉实习生他的角色和目标:“小张,你是我的数据分析助理,主要任务是帮我整理、分析和备份销售数据,支持决策。”
2.给他权限和工具:让他能直接访问公司的数据库、文件系统、邮件系统,甚至给他装好了做图表的软件。
3.给他一个智能笔记本(记忆):能自动记录他之前处理过哪些数据、做过什么分析、王经理喜欢什么格式的报告。下次处理类似任务,他能直接参考。
4.你给他一个智能搜索引擎(知识检索):当他需要了解“华南区市场特点”来做分析时,他能自己快速查到相关资料库里的信息。
5.教他标准操作流程(工具集成):告诉他“发邮件给王经理”这个动作,只需要调用“邮件工具”,填好收件人、标题、正文、附件就行,不用每次都想怎么登陆邮箱、点哪里。
核心操作: 构建一个围绕AI的信息和工作环境。不再是解构单次指令,而是搭建一个包含身份设定、记忆、知识库、可用工具、操作规范的“上下文生态”。你只需要给一个相对简单自然的指令(比如“小张,把华南区Q2的数据分析一下,和Q1做个对比,找出异常点,下午3点前发邮件报告给王经理”),他就能自己调用工具、查阅资料、参考记忆,完成任务。
Why:
任务变复杂: 我们不再满足于让AI回答个问题、写段文案,而是希望它能像“智能员工”一样处理多步骤、需要信息整合和工具调用的实际工作流(分析报告、项目管理、客服跟进等),单靠提示词搞不定。
信息量太大: 很多任务需要参考大量背景信息(公司数据、行业知识、过往记录)。提示词塞不下,需要动态地、按需地把相关信息放进工作台。
需要“记忆”和“状态”: 处理长对话(客服)、连续任务(项目管理)时,AI需要记住之前说过什么、做到哪一步了。上下文工程负责管理这些记忆。
需要“动手能力”: AI光“知道”不行,还得能“做”——发邮件、查数据库、更新系统。上下文工程负责安全、方便地给AI接入这些工具。
成本考虑: 把海量信息都硬塞进提示词(上下文窗口)非常昂贵且低效。上下文工程通过智能检索和记忆管理,只把当下最相关的信息放进去,大大降低成本。
三、总结特点:
特点 |
提示词工程 (Prompt Engineering) |
上下文工程 (Context Engineering) |
---|---|---|
核心对象 |
单次指令(提示词本身) |
AI的工作环境(身份、记忆、工具、知识库) |
目标 |
让AI单次回答好一个特定问题/任务 |
让AI能持续、自主完成复杂任务流 |
方法 |
精雕细琢语言,加例子,用技巧 |
搭建信息生态系统,接入工具,管理记忆 |
类比 |
写一份完美的一次性操作说明书 |
配备一个智能工作台+万能小秘书 |
适合任务 |
相对简单、独立、定义清晰的任务 |
复杂、连续、需要信息整合和工具调用的任务 |
演进原因 |
AI基础能力提升,但处理复杂任务力不从心 |
需要AI成为能处理实际工作的“智能体” (Agent) |
简单说:
- 提示词工程 是教AI “怎么回答这个问题”。
- 上下文工程 是给AI “配备一个让它能自己干活儿的环境”。
为什么会有这个转变?因为我们对AI的期望更高了!我们不再只满足于它当一个“答题机”,而是希望它成为一个能真正帮我们解决实际问题、处理复杂工作的“数字同事”。要给“数字同事”配齐办公装备和环境,这就是上下文工程在干的事。