1、非常现实的问题
像绝大多数小型科技公司一样,作为一家中关村里的软件企业,我们的产品定位清晰、目标客户明确,在自己擅长的领域持续研发和耕耘,拥有了一定规模的用户群。
在公司发展的近10年时间里,我和我的同事共接待了近万名客户,这些客户有的购买了我们的产品成了真正的用户,有的只是做了咨询。我们的售前人员和售后服务人员平均每天要花3个多小时通过QQ或微信与客户聊天,每年的聊天记录保存下来有上万条,电脑的大部分空间被历史聊天记录占据着。
说到这里,你可能猜到我想说什么了。那就是:这么多客户、这么多次的沟通,聊天的内容大多是雷同的。
分析总结一下几十万条聊天记录,最后发现交流的内容竟然都聚焦在仅仅一百个左右的具体问题上。换句话说,我们大部分时间是在做重复的工作、说重复的话,只是面对的人不同、说话的语气不同、聊天的话术不同而已,但沟通的内容是一样的。这一点我们每个人也是非常清楚的,同样的话在翻来覆去的说,所谓的成长,只是语气更温和了、讲话更简洁清楚了、说话的主题更明确了、让用户更容易理解和接受我们了......(这就是我们与机器的区别吧)。
大概5年前吧(2018年),我就有了使用AI客服的想法,在用户访问我们的网页或APP的时候,使用智能聊天机器人接待客户,回答客户问题,必要时再引导到人工客服那里进一步沟通,从而实现节约接待成本、提高接待效率的目的,毕竟机器人可以时刻在线,如果足够智能应该还是不错的。这期间我也逐渐开始接到一些智能机器人呼入的推销电话、打过一些大厂的智能客服电话、在大厂的网页上跟一些机器人聊过天,说实话,总体效果不好,不管对方是多么大的企业,实现的效果真的很牵强,经常答非所问、不能真正理解客户需求,也很难解决实际问题,最终还是要转到人工,排队等待真人客服接待。三大电信公司、银行、几大云厂商的智能电话都是这个情况,真正的效果他们应该也清楚。
效果不理想的原因其实很简单,那就是这些智能客服其实一点也不“智能”,他们采用的技术只是传统的搜索和匹配,并没有上升到“学习”、“总结”、“理解”和“推理”的层次。这个结论是我自己在反复调查、体验和技术尝试的过程中总结出来了。
这个情况直到2022年11月份一天,被彻底改变了,那就是ChatGPT的出现