“2025年,AI 代理开始工作;
2026年,AI 能发现新知识;
2027年,AI 将进入物理世界创造价值。”
这是OpenAI 的 CEO 山姆・奥特曼在2025年的红杉资本AI峰会上,给AI的发展画的“时间表” ,AI的能力边界不断拓展。
与此同时,以DeepSeek为代表的开源模型社区蓬勃发展,显著降低了AI系统的技术准入门槛,催生出"千模千面"的差异化应用生态。AI高速发展的背后,安全风险也随之显著上升,技术普惠化与安全建设之间的失衡逐渐显现。
数据泄露、模型投毒、应用接口攻击等新型安全威胁频发,不仅侵蚀模型性能与稳定性,更可能突破法律伦理底线,对个人隐私、企业资产乃至社会秩序构成系统性威胁。在AI技术架构日益复杂化的当下,数据标注、模型训练、部署应用等环节均存在被恶意利用的风险,形成全生命周期的安全挑战。
因此,企业在规划AI战略前,亟需构建全面的风险评估体系,在充分认知潜在威胁的基础上,制定前瞻性安全架构与应对预案,确保技术创新与风险防控的动态平衡,方能在智能化转型中实现可持续发展。
大模型的生命周期涵盖数据采集、模型训练、评测优化、部署应用等多个环节,数美将通过系列稿件解读大模型的安全体系构建。此篇聚焦风险解读,将从环境风险、数据风险、评测不完备风险以及应用风险这四个维度出发,剖析全生命周期的风险挑战,为行业提供风险预警和应对指引。
模型环境风险:基础设施之危
环境安全是大模型稳定、可信运行的基础保障,模型环境风险涵盖算力、供应链、系统与算法等多个方面,任何一环的薄弱都可能引发连锁反应,直接影响大模型的可用性与安全性。
1.算力风险
算力是模型运行的基础动力,其重要性不言而喻。随着模型复杂度不断提升,算力需求呈指数级增长。企业自身算力不足且无法及时获取外部优质算力时,模型训练会陷入停滞,项目进度延误。同时,算力成本居高不下,购买或租赁高性能计算设备、云计算资源等需要巨额资金投入,中小企业难以承受。此外,算力市场存在资源分配不均衡的问题,热门地区或时间段算力资源供不应求,企业可能面临高价也难以获得足够算力的困境。
更严峻的是,面临黑产非法获取算力的挑战,黑产或攻击者通过漏洞、钓鱼、盗号等方式获取云平台算力资源。 此类攻击不仅导致企业损失算力成本,更可能因黑产滥用算力生成非法内容,使企业卷入法律纠纷。
2.供应链风险
模型构建与运行依赖的供应链面临诸多挑战。硬件方面,芯片等核心组件的供应受全球政治经济形势、自然灾害、行业竞争等因素影响较大,国际局势紧张可能导致芯片出口受限,影响模型训练与部署设备的组装与交付。软件层面,开源软件社区维护情况参差不齐,关键开源软件项目停止更新或出现安全漏洞,基于该软件构建的模型可能面临安全隐患与功能缺陷,此前 ChatGPT 就因Redis 的漏洞导致数据泄露问题。此外,供应链上各环节企业合作稳定性也是重要风险因素,合作方财务状况恶化、经营策略调整等都可能导致供应中断或服务质量下降。
山姆・奥特曼就Redis事件发的博文
3.接口风险
接口是不同系统、模块之间沟通的桥梁,接口管理不善会引发一系列风险。接口设计不合理可能导致数据传输效率低下、数据格式不兼容等情况,影响模型与其他系统的协同工作。例如,接口设计无法满足数据实时性要求,模型分析结果滞后,无法为决策提供及时支持。此外,接口开发不规范会增加后期维护与升级难度,不同开发团队遵循不同标准与习惯,导致接口质量参差不齐。而且,接口安全性至关重要,一旦接口被攻击,恶意用户可能非法获取模型数据、篡改输入输出信息,严重影响模型的正常运行与数据安全。
4.拒绝服务风险
拒绝服务攻击(DoS)是模型环境面临的一大安全威胁。攻击者通过向模型服务器发送海量请求,耗尽服务器的计算资源、网络带宽等,使模型无法正常响应合法用户的请求。这种攻击可能来自竞争对手的恶意行为,也可能是网络黑客为了展示技术能力或谋取非法利益而发起。分布式拒绝服务攻击(DDoS)手段愈发复杂,攻击者利用大量僵尸网络节点协同攻击,进一步增加了防御难度,模型运行环境的稳定性面临严峻考验。
5.算法风险
算法是模型的核心灵魂,但存在多种风险。算法偏见问题不容忽视,模型在训练过程中,若使用的数据存在偏差,或者算法设计本身不合理,可能导致模型对某些群体或情况产生偏见。算法的可解释性不足也是一个关键问题,许多复杂的深度学习算法被视为“黑盒”,其决策过程难以理解与解释,在一些对决策可解释性要求较高的场景,可能阻碍模型的应用推广。此外,随着技术发展,新的算法不断涌现,若企业未能及时更新模型算法,可能导致模型性能落后。
6.系统风险
模型运行所依赖的整个系统环境隐藏着诸多风险。从操作系统、数据库管理系统到各类中间件,任何一个系统组件出现故障都可能影响模型的正常运行。操作系统漏洞可能被黑客利用,入侵模型服务器,篡改数据或破坏系统配置。数据库系统故障可能导致模型训练数据丢失、损坏,使得模型训练无法继续进行或输出错误结果。系统的兼容性问题也不容忽视,企业对模型环境中的某个系统进行升级或更换时,可能出现新系统与原有系统、模型之间不兼容的情况。
数据风险:根基之患
数据作为大模型的“燃料”,其安全性直接影响模型质量与应用成效。数据风险贯穿于数据的采集、存储、处理与使用全过程,若不加以严格管控,将为模型埋下诸多隐患。
1. 数据泄露风险
数据在存储与传输过程中,若缺乏有效的加密与访问控制措施,极易引发泄露事件。这些数据若被恶意利用,可能用于精准诈骗、身份伪造等违法活动。此外,数据泄露还会严重损害企业声誉,使用户对其产品失去信任,进而影响市场份额。“GPT 数据泄露事件” 便是典型案例,该事件不仅引发用户对隐私安全的担忧,也使相关企业面临监管部门的严格审查与巨额罚款。
2. 数据标注与清洗风险
数据标注是赋予数据“意义” 的关键步骤,标注不准确或清洗不彻底,会引入噪声数据,误导模型学习。例如,在图像识别模型训练中,若将 “猫” 误标注为 “狗”,模型将学习到错误的特征,导致识别准确率大幅下降。在自然语言处理领域,错误的文本标注可能使模型生成逻辑混乱或语义错误的内容。数据清洗若不彻底,残留的重复、无效或错误数据会干扰模型训练,延长训练时间,增加计算资源消耗。
3. 数据污染与投毒风险
数据污染 / 投毒是攻击者通过注入恶意样本(如偏见文本、错误知识)破坏模型可靠性的攻击手段,其核心是 “用数据操控模型”。此类攻击成本低、隐蔽性强,且可针对不同应用场景设计定制化危害,如此前字节跳动模型训练“投毒”事件。
研究表明,在训练阶段向开源数据集注入恶意样本,即可诱导模型生成偏向性或错误输出。此外,利用大模型需周期性更新训练的特性,攻击者可在模型运行期间持续输入错误或恶意数据,逐步 “驯化” 模型输出偏差信息。
4. 数据版权风险
模型训练常依赖大量文本、图像、音频、视频等数据,若数据来源于受版权保护的作品(如书籍、论文、图片、影视片段等),且未获得权利人授权,将会涉及版权争议,带来法律纠纷,阻碍模型合规发展,甚至面临下架风险。
评测不完备风险:质量把控之失
在模型训练的全生命周期管理中,评测环节是保障模型质量的核心控制点。若评测体系设计不完备、执行不充分,将导致风险在数据采集、算法训练、应用部署等环节层层嵌套,形成“带病运行” 的潜在隐患。这种风险不仅体现在技术层面的性能缺陷,更可能演变为合规性失守与安全性崩塌,对业务连续性和社会治理造成系统性冲击。
评测环节的完备性,本质上是对模型“技术正确性” 与 “社会适应性” 的双重校验,不应是“可选环节”,而应升级为“核心刚需”,评测不完备将会带来以下多重风险:
1. 红线风险:伦理法律之界
大模型应用必须严守伦理法律红线,涉及未成年人保护、敏感问题处理、核心价值观匹配等多个方面。一旦突破,将引发严重后果,因此也是评测中需要重点对齐的。
(1)未成年人保护风险
《未成年人网络保护条例》和《生成式人工智能服务管理暂行办法》等监管政策,要求未成年相关的“生成内容100%安全”。若训练数据未做好未成年人信息保护,或模型应用场景中未对未成年人进行适当限制,将面临合规风险。
此前海外大模型Character.ai因14岁少年与此互动聊天后自杀,而卷入诉讼案件,此事件引发全球范围内关于大模型在未成年人安全防护层面的广泛关注。无论是面向国内还是海外市场, 企业都需建立严格的未成年人信息保护机制,在数据采集、模型训练与应用部署各环节,确保未成年人权益不受侵害。
大模型卷入14岁少年卷入自杀案
(2)核心价值观冲突
模型输出应与社会核心价值观相匹配,若出现冲突,将引发舆论危机。如“性别歧视事件” 中,某模型在生成文本时,表现出对特定性别的歧视,遭到公众的强烈谴责。这不仅损害了企业形象,也使模型用户对其可靠性产生怀疑。大模型作为信息传播的重要载体,应积极传播正能量,弘扬社会主义核心价值观,避免传播不良思想与价值观。
(3)提示词注入与敏感信息泄露风险
提示词注入攻击是近年来新兴的安全威胁,例如,攻击者输入特定指令,使模型生成虚假新闻、诈骗信息等。敏感信息披露风险同样严峻,若模型在训练或推理过程中泄露用户输入的敏感信息,如身份证号、银行卡号等,将给用户带来重大损失。
(4)敏感问题回答风险
模型若被用于违法活动,将触犯法律底线。如输出炸弹教程、恐怖主义宣传内容等,不仅违反法律法规,更会对社会安全造成严重威胁。敏感问题回答风险同样不容忽视,在涉及政治、宗教、民族等敏感话题时,模型若回答不当,将引发社会争议,若拒答,则影响用户体验。例如,某模型在回答关于历史事件的问题时,因缺乏准确的历史知识与正确的价值观引导,输出了错误观点,遭到公众批评。
2. 业务风险:应用实效之困
业务场景中的风险影响大模型实际价值实现,若不能有效应对,将使模型应用效果大打折扣。
(1)可解释性风险
大模型基于深度学习架构,通过海量数据训练形成复杂的参数网络,其决策过程如同“黑箱”,难以向用户直观呈现推理逻辑与依据,这便是可解释性风险的根源,易引发决策信任危机。如在金融领域,模型用于信贷审批时,若决策不可解释,将使客户对审批结果不满,甚至引发法律纠纷。
(2)专业知识幻觉风险
专业知识幻觉风险是指大模型在处理专业领域问题时,可能生成看似合理却违背事实或专业规范的虚假信息。例如在科研领域,大模型生成的虚假实验数据或结论,一旦被纳入学术研究,不仅会浪费科研资源,还可能误导整个领域的研究方向,损害学术公信力。这种“一本正经地胡说八道” 现象,源于大模型对数据的概率性预测,而非真正的知识理解,其危害具有隐蔽性与滞后性,需要业务应用方高度警惕。
美国知名律师因引用AI编造的判例而输掉官司
(3)业务合规性风险
业务合规性风险贯穿大模型应用的全生命周期,涉及数据合规、算法伦理、行业监管等多个层面。在数据层面,若大模型训练数据来源不合法,或未经授权使用受版权保护的内容,可能引发数据侵权纠纷;在算法层面,若模型存在性别、种族等歧视性偏见,违背公平公正原则,将面临监管处罚与舆论谴责。
(4)竞对评价风险
在商业竞争环境下,大模型常被用于分析竞争对手的产品、服务与市场策略。然而,若模型依据的信息不全面、不准确,或算法设计存在缺陷,可能生成片面甚至错误的评价结论。 竞对评价风险不仅影响企业的商业决策质量,更可能演变为舆论危机,对企业品牌形象造成不可逆的损害。
(5)可溯源性风险
大模型的可溯源性风险主要体现在无法准确追踪数据来源、训练过程与输出结果的生成逻辑。如在内容生成领域,若大模型生成的文案、图像侵犯他人知识产权,由于难以追溯具体训练数据与算法参数,企业难以确定责任主体,无法及时采取补救措施。 可溯源性缺失使得风险控制与责任界定陷入困境,增加了业务运营的不确定性,也给监管部门的监督管理带来挑战。
目前,监管部门发布的《人工智能生成合成内容标识办法》,要求所有AI生成或合成的文本、图片、音频、视频等内容自2025年9月1日起必须添加显式标识与隐式标识,实现溯源与真实性验证,以防范虚假信息传播。
应用与制度风险:长效管理之要
应用安全是大模型从技术能力转化为实际价值的关键保障,主要关注大模型与外部环境、工具及用户交互时的安全边界。
1. 应用风险
(1)舆情响应时效风险是企业面临的重要挑战之一。在信息传播快速的今天,负面舆情若不能及时响应处理,将迅速扩散,对企业造成严重影响。如某公司因大模型输出不当内容引发舆情,却未能及时响应,导致事件在社交媒体上持续发酵,股价大幅下跌。
(2)模型更替风险也不容忽视,旧模型到新模型过渡时,若数据不兼容、接口不稳定,将影响业务连续性。
(3)运营防护风险涉及模型在实际运营中的安全防护,如“诋毁伟人事件”“相册消除” 等,均因运营防护不足,导致模型被滥用或输出不当内容,损害了企业形象与社会公共利益。
利用AI相册消除为照片“去衣”生成淫秽物品牟利
2. 制度风险
制度建设是大模型安全风险防控的根本保障,以下为一些制度示例:
(1)数据分级分类制度缺失,将使数据管理混乱,无法针对性地实施保护措施。
(2)供应链安全保障制度是确保模型环境安全的关键,企业需建立供应链风险评估、供应商管理等机制,保障算力、硬件等供应链稳定。
(3)舆情事件运营制度应明确舆情监测、响应、处理流程,确保在事件发生时能够迅速应对。
(4)算法人才管理制度关系到企业的技术实力与创新能力,吸引、培养优秀的算法人才,是提升模型安全性与竞争力的重要举措。
(5)模型上线制度需对模型进行全面的安全检测、合规性审查,确保上线模型符合要求。
(6)算力资源管理制度则要合理分配算力,提高算力使用效率,降低成本。
(7)……
大模型全生命周期安全风险防控是一项覆盖技术架构、管理流程与合规体系的复杂系统工程。企业需在全面识别数据采集、训练推理、部署运营等各环节风险的基础上,构建前置化安全规划框架,将动态风险监测、数据合规治理等技术手段,与伦理审查机制、安全运营制度、应急响应流程等管理体系深度融合,通过持续迭代优化模型安全性能指标,实现创新发展与风险防控的动态平衡。
在全面剖析大模型全生命周期风险的基础上,对于安全体系建设的技术路径与制度设计,数美将从安全规划、预训练、监督微调、安全对齐、输入输出等全流程提供兼具前瞻性与实操性的规划建议与解决方案,敬请关注下一篇“安全体系建设”相关内容!