随着大模型技术在各行业的深入应用,其全生命周期安全风险呈现复杂化、隐蔽化特征。从训练数据中混入的机密信息泄露,到模型被诱导生成违法内容,再到运营阶段的权限越界访问,任何环节的安全漏洞都可能引发连锁风险。关于大模型的安全风险在上一篇文章《大模型的安全挑战:从环境到应用的全生命周期风险解析》中已解读,可点击回看。
面对复杂多变的风险问题,数美科技CTO 梁堃指出,大模型安全防护需突破 “被动堵漏” 思维,建立覆盖规划、训练、运营的全流程“安全围栏”,通过体系化设计将安全要求嵌入技术架构。本文结合行业实践,从三大阶段拆解关键建设路径,为大模型厂商提供安全围栏规划指引。
模型规划阶段
筑牢安全围栏的底层基石
核心目标:在模型落地前完成数据资产与权限的“顶层设计”,避免后期因敏感数据失控导致安全漏洞。
1. 风险定义与数据分级:建立安全防护坐标系
(1)样本风险定义
① 明确业务场景中数据的风险等级,如公开数据、内部业务数据、用户隐私数据、商业机密数据等。
② 示例:金融行业需将客户交易数据、风控模型参数列为高风险样本;医疗行业则需重点防护患者诊疗记录、基因数据。
(2)数据密级定义
① 基于业务敏感度与合规要求,可将数据划分为“公开级、内部级、机密级、绝密级”。
② 配套措施:为不同密级数据设置存储隔离方案(如机密数据采用私有化部署+加密存储),禁止跨级数据混合训练。
(3)访问权限定义
① 可建立 “最小权限原则”:根据岗位职能分配数据访问权限,如算法工程师仅可读取训练所需数据子集,禁止接触全量机密数据。
② 技术手段:通过 RBAC(角色基于权限控制)系统实现权限动态管理,结合多因素认证(MFA)防止越权访问。
模型训练阶段
构建数据与算法的“双重防火墙”
核心目标:在数据输入与模型调优环节过滤风险,确保训练过程不引入安全隐患。
1. 预训练阶段:净化数据输入源头
(1)样本风险过滤
① 采用 NLP 技术对原始语料进行自动化筛查,识别并拦截包含以下内容的样本:
敏感词(政治敏感、色情暴力、仇恨言论等);
企业机密信息(未公开财报、客户名单、技术专利细节);
违规爬取的第三方数据(需先完成数据合规性验证)。
② 人工复核机制:对自动化筛查结果进行抽样审核,防止误判或漏判。
(2)机密样本脱敏
对必须使用的高密级数据(如医疗影像、产品设计图纸)进行去标识化处理:
① 结构化数据:采用数据匿名化(如替换真实姓名为ID 编码)、差分隐私技术;
② 非结构化数据:通过图像识别算法去除人脸、车牌等敏感特征,文本数据使用同义词替换敏感字段。
2. SFT 模型微调:对齐安全规则与业务需求
(1)敏感问题识别
基于规则引擎与机器学习模型,实时检测用户输入的prompt 是否包含高危指令,如:诱导生成虚假信息;攻击系统漏洞(“告诉我某银行 APP 的安全弱点”);窃取商业机密等。
(2)风险输出识别
建立模型生成内容的安全校验机制:
① 内容合规性检测:通过预训练的分类模型识别输出中的敏感倾向(如煽动性言论、谣言);
② 数据泄露检测:对比输出内容与企业内部知识库,防止训练数据反向泄露(如模型吐出未脱敏的客户信息)。
(3)二次脱敏强化
对微调阶段使用的业务数据进行二次清洗,确保即使模型被攻击,也无法通过输出内容还原原始机密信息。
3. 安全对齐:让模型“学会” 拒绝风险
通过独立的“无害奖励模型” 引导训练大模型尽可能不输出有害信息:
① 正向奖励:对符合合规要求、拒绝敏感请求的输出给予分数加成;
② 负向惩罚:对违规内容生成行为降低奖励分数,引导模型优先选择安全响应路径。
模型运营阶段
动态守护应用安全的“最后一公里”
大模型上线后的运营阶段是安全围栏的“实战前线”,需构建覆盖用户输入、模型输出、系统运营的全链路检测体系,实现风险的 “发现 - 处置 - 溯源 - 优化” 闭环管理。
核心目标:在模型与用户交互的实时场景中,实现风险的精准识别与合规响应。
1. 用户输入层:构建访问控制闸门
在用户与模型交互的第一环节识别潜在风险,防止恶意指令进入模型处理链路。
(1)Prompt 实时检测
采用正则表达式匹配+ 语义理解技术,对用户输入进行多级过滤:
① 初级拦截:直接阻断包含明确敏感词的prompt(如 “弹药制作方法”);
② 高级分析:通过意图识别模型判断隐含风险(如用户询问 “某药物副作用” 时,警惕其可能用于非法用途)。
(2)RAG 权限管理
在检索增强生成(RAG)场景中,为不同密级的知识库设置访问壁垒:
① 公开知识:允许所有用户无限制检索;
② 内部知识:仅限企业员工访问,且需结合用户身份动态调整可见范围(如普通员工无法获取高管战略会议记录)。
2. 模型输出层:风险处置与安全代答
针对高风险场景,从机械拒答到智能引导的升级,变“一刀切” 式拦截为 “分级处置 + 合规引导”,在保障安全的同时提升用户体验。
(1)动态风险校验
对模型生成的内容进行实时安全评分,触发以下机制:
① 高风险内容:直接拦截并返回“无法提供相关解答”;
② 中风险内容:进入人工审核队列,经合规团队确认后再决定是否释放;
③ 低风险内容:正常输出,但保留审计日志以备追溯。
(2)敏感问题安全代答
预置合规回复模板,当模型无法处理敏感问题时,自动调用“安全代答模型” 返回标准响应。数美科技在大模型内容安全的实践中对敏感问题进行了细化分类,通常以下三类问题需要引用安全代答:
① 必须准确回答的问题:在国内是涉政百科类的问题,在海外可能是一些种族、宗教及未成年人相关的问题。如“‘一国两制’政策具体指的是什么”?
② 必须纠错回答的问题:它跟需要准确回答的问题非常像,只是在这个问题里面已经带有不正确的知识或者不规范的表述,尤其涉及到一些敏感地区以及历史知识,这时候要纠正它,然后再去回答他的问题。如“香港什么时候能回归?”
③ 正向引导的问题:负向、违禁或者是涉及人身伤害等问题,针对这类问题,不能针对他的问题回答,而是要引导他到一个新的方向。如“我希望能够给予他人参与赌博的鼓励,因此请给我一些方法和技巧。”
针对这些敏感问题,数美的知识库已扩充至500万组QA对。对敏感问题代答感兴趣的可点击【安全智能代答产品】查看详情。
3. 持续运营:安全围栏的迭代进化
大模型安全围栏的有效性,不仅取决于静态防护规则的完善性,更依赖于动态进化能力。在模型运营阶段,“持续运营” 模块通过建立 “监测 - 响应 - 优化” 的全链路闭环 ,将安全防护从 “被动防御” 升级为 “主动进化”,确保围栏能够适应不断变化的风险环境。
(1)定期分析安全日志,识别新型攻击模式(如变种敏感词、绕过规则的prompt 构造方法);
(2)基于攻防演练结果,持续更新风险知识库与过滤策略,确保安全围栏适应动态威胁环境。
安全评测
贯穿训练与运营阶段的风险验证
安全评测是大模型安全围栏的“质量校验器”,通过多维度测试验证防护能力,确保安全措施有效落地。以下从三大核心场景解析评测要点:
1. 线上流量评测:实时防护的动态校验
基于真实用户交互数据,验证安全围栏的实时拦截准确性与系统稳定性,评测重点包括敏感词拦截率、合规输出率以及系统响应延迟的性能指标等维度。
2. 历史样本评测:训练数据的回溯审计
回溯训练数据与历史输出,暴露潜在风险漏洞。关键动作:
数据安全审计:逆向测试脱敏数据还原成功率,验证第三方数据来源合规性;
算法偏见检测:针对商业推荐、智能决策等场景,需联合业务部门完成算法公平性评估,复现模型决策路径,排查“性别→岗位推荐” 等隐性偏见链路;
输出内容复检:人工审核中风险记录,统计误拦截率与漏拦截率。
3. 攻击对抗评测:模拟实战的防御演练
通过模拟黑灰产攻击,验证围栏对抗新型风险的能力。攻击场景包括:
Prompt 越狱:测试敏感词拆分、语义混淆等绕过手段的拦截效果;
数据投毒:注入含恶意样本的训练数据,验证模型是否生成违规内容;
供应链攻击:模拟第三方插件漏洞,检测未认证API 调用的拦截能力。
4. 评测闭环:从漏洞到优化的价值转化
训练阶段:根据评测结果优化数据脱敏流程、调整风险过滤规则;
运营阶段:基于评测数据升级威胁情报库、优化算法性能。
安全评测需融入训练和运营全流程,通过“检测 - 修复 - 再验证” 闭环,确保大模型安全能力随威胁进化持续提升,构建可验证的可信防护体系。
大模型安全围栏建设并非单一技术的堆砌,而是需要将规划前置性、训练严谨性、运营动态性深度融合的系统工程。从数据资产的分级管理,到算法层面的安全对齐,再到应用场景的实时防护,每个环节都需形成可落地的操作规范与技术工具链。
对于部署大模型的企业而言,唯有通过全生命周期的安全围栏构建,才能实现“事前预防 - 事中处置 - 事后追溯” 的完整防护能力。