MySQL高级-查询截取分析

本文介绍了MySQL的慢查询日志,用于记录响应时间超过设定阈值的SQL语句。通过开启慢查询日志,可以找出并优化性能瓶颈。详细步骤包括设置参数、创建索引、分析查询计划等,以提高数据库性能。同时,文章提到了Show Profile工具,用于进一步诊断SQL执行的资源消耗。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

慢查询日志

是什么?

MySQL的慢查询日志是MySQL提供的一种 日志记录,它用来记录在MySQL中响应时间超过阈值的语句,具体指运行时间超过long_query_tim值的SQL,会被记录到慢查询日志中。

由该日志查看哪些SQL超出了我们的最大忍耐时间,找出来超时的,用 explain 分析为什么慢。

怎么玩?

默认情况下,MySQL数据库没有开启慢查询日志,需要我们手动来设置这个参数。

当然如果不是调优需要的话,一般不会启动这个参数。因为开启慢查询日志或多或少会有一些性能上的影响,慢查询日志支持将日志记录写入文件。

-- 默认情况下slow_query_log的值为OFF,表示慢查询日志是禁用的
-- 可以通过设置slow_query_log的值来开启
SHOW VARIABLES LIKE '%slow_query_log%';

-- 使用这个语句开启了慢查询日志只对 当前数据库(不是整个MySQL的数据库) 生效,重启数据库后会失效
-- 对当前会话无效,只对设置之后创建的会话有效
SET GLOBAL slow_query_log=1;
-- 对当前会话立即起效
SET SESSION slow_query_log=1; 

-- 想永久生效的话还是修改 my.cnf 文件,其它变量也如此

在这里插入图片描述

运行时间大于 long_query_time 的值的语句将会被记录下来,但是等于的不会。

-- 查看当前多少秒算慢
SHOW VARIABLES LIKE 'long_query_time%';

-- 查看当前系统中有多少慢查询语句
SHOW GLOBAL status LIKE '%Slow_queries%';

在这里插入图片描述

my.cnf 文件中添加如下配置,之后重启,就是在配置文件中配置了:

[mysqld]下配置:
slow_query_log=1;
slow_query_log_file=/var/lib/mysql/xxxx-slow.log
long_query_time=3;
log_output=FILE

批量数据脚本(比较关键)

建表SQL

-- 新建库
create database bigData;
use bigData;

-- 建表dept
CREATE TABLE dept(  
    id INT UNSIGNED PRIMARY KEY AUTO_INCREMENT,  
    deptno MEDIUMINT UNSIGNED NOT NULL DEFAULT 0,   
    dname VARCHAR(20) NOT NULL DEFAULT "",  
    loc VARCHAR(13) NOT NULL DEFAULT ""  
) ENGINE=INNODB DEFAULT CHARSET=UTF8 ;  

-- 建表emp
CREATE TABLE emp  (  
    id INT UNSIGNED PRIMARY KEY AUTO_INCREMENT,  
    empno MEDIUMINT UNSIGNED NOT NULL DEFAULT 0, /*编号*/  
    ename VARCHAR(20) NOT NULL DEFAULT "", /*名字*/  
    job VARCHAR(9) NOT NULL DEFAULT "",/*工作*/  
    mgr MEDIUMINT UNSIGNED NOT NULL DEFAULT 0,/*上级编号*/  
    hiredate DATE NOT NULL,/*入职时间*/  
    sal DECIMAL(7,2) NOT NULL,/*薪水*/  
    comm DECIMAL(7,2) NOT NULL,/*红利*/  
    deptno MEDIUMINT UNSIGNED NOT NULL DEFAULT 0 /*部门编号*/  
)ENGINE=INNODB DEFAULT CHARSET=UTF8 ; 

设置参数log_bin_trust_function_creators

-- 查看 log_bin_trust_function_creators
show variables like 'log_bin_trust_function_creators';
-- 开启为 on
set global log_bin_trust_function_creators=1;

创建函数保证每条数据都不同

-- 产生随机字符串
DELIMITER $$
CREATE FUNCTION rand_string(n INT) RETURNS VARCHAR(255)
BEGIN -- 方法开始 
	-- 声明一个 字符窜长度为 100 的变量 chars_str ,默认值 
 	DECLARE chars_str VARCHAR(100) DEFAULT   'abcdefghijklmnopqrstuvwxyzABCDEFJHIJKLMNOPQRSTUVWXYZ'; 
 	DECLARE return_str VARCHAR(255) DEFAULT '';
 	DECLARE i INT DEFAULT 0;
 	-- 循环开始
 	WHILE i < n DO
 	SET return_str = CONCAT(return_str,SUBSTRING(chars_str,FLOOR(1+RAND()*52),1));
	-- concat 连接函数,substring(a,index,length) 从index处开始截取
 	SET i = i + 1;
	END WHILE;
 	RETURN return_str;
END $$
-- 假如要删除
-- drop function rand_string;

-- 用于随机产生部门编号
DELIMITER $$
CREATE FUNCTION rand_num( ) RETURNS INT(5)  
BEGIN   
 	DECLARE i INT DEFAULT 0;  
 	SET i = FLOOR(100+RAND()*10);  
	RETURN i;  
END $$
-- 假如要删除
-- drop function rand_num;

创建存储过程

-- 创建往emp表中插入数据的存储过程
DELIMITER $$
CREATE PROCEDURE insert_emp(IN START INT(10),IN max_num INT(10))  
BEGIN  
DECLARE i INT DEFAULT 0;   
	-- set autocommit = 0 把 autocommit 设置成 0,不自动提交事务,提高执行效率
     SET autocommit = 0;    
     -- 重复
     REPEAT  
         SET i = i + 1;  
         INSERT INTO emp (empno, ename, job, mgr, hiredate, sal, comm, deptno) 
         VALUES ((START+i) ,rand_string(6),'SALESMAN',0001,CURDATE(),FLOOR(1+RAND()*20000),FLOOR(1+RAND()*1000),rand_num());  
     UNTIL i = max_num   -- 直到 i到达最大值 上面也是一个循环
     
     END REPEAT;  -- 满足条件后结束循环
     COMMIT;   -- 执行完成后一起提交
 END $$
 
-- 删除
-- DELIMITER ;
-- drop PROCEDURE insert_emp;

-- 创建往dept表中插入数据的存储过程
-- 执行存储过程,往dept表添加随机数据
DELIMITER $$
CREATE PROCEDURE insert_dept(IN START INT(10),IN max_num INT(10))  
BEGIN  
DECLARE i INT DEFAULT 0;   
	SET autocommit = 0;    
    REPEAT  
        SET i = i + 1;  
        INSERT INTO dept (deptno ,dname,loc ) VALUES (START +i ,rand_string(10),rand_string(8));  
    UNTIL i = max_num  
    END REPEAT;  
    
    COMMIT; 
END $$ 

-- 删除
-- DELIMITER ;
-- drop PROCEDURE insert_dept;

调用存储过程

DELIMITER ;
CALL insert_dept(100,10); 

-- 执行存储过程,往emp表添加50万条数据
DELIMITER ;    -- 将结束标志换回 ;
CALL insert_emp(100001,480000); 

测试题

-- 查询 部门编号为101的,且员工编号小于100100的用户,按用户名称排序
SELECT sql_no_cache * FROM emp WHERE deptno = 101 AND empno < 100100 ORDER BY ename;

-- 分析语句结果
EXPLAIN SELECT sql_no_cache * FROM emp WHERE deptno = 101 AND empno < 100100 ORDER BY ename;

*************************** 1. row ***************************
           id: 1
  select_type: SIMPLE
        table: emp
   partitions: NULL
         type: ALL -- ALL 最坏情况
possible_keys: NULL
          key: NULL
      key_len: NULL
          ref: NULL
         rows: 498316
     filtered: 3.33
        Extra: Using where; Using filesort -- 出现 filesort
1 row in set, 2 warnings (0.00 sec)

-- 优化开始
-- 建立索引
-- 我们得尽量给 where 的过滤条件以及 order by 排序用上索引
-- 但是此时我们两个字段 deptno,empno是过滤条件,ename是排序条件

-- 第一次优化的索引及测试
CREATE INDEX ind_dno_eno_ena ON emp(deptno,empno,ename);
EXPLAIN SELECT sql_no_cache * FROM emp WHERE deptno = 101 AND empno < 100100 ORDER BY ename;
-- 0.27s
-- 我们发现并没用上索引,没有 filesort 解决问题,删除索引

-- 第二次优化的索引及测试
CREATE INDEX ind_dno_ena ON emp(deptno,ename);
EXPLAIN SELECT sql_no_cache * FROM emp WHERE deptno = 101 AND empno < 100100 ORDER BY ename;
-- 0.09s
-- 确实使用了索引,而且速度提高了3倍

-- 第三次优化的索引及测试
CREATE INDEX ind_dno_eno ON emp(deptno,empno);
EXPLAIN SELECT sql_no_cache * FROM emp WHERE deptno = 101 AND empno < 100100 ORDER BY ename;
-- 0.01s
-- 出现 filesort ,但是查询时间比上一次的高了 10 倍,怎么回事?



出现 filesort 但是查询时间比上一次的高了 10 倍,怎么回事?

  • 原因是:所有的排序都是在条件过滤之后才执行的,所以如果条件过滤了大部分数据的话,几百几千条数据进行排序其实并不是很消耗性能,所以在这种情况下,即使索引优化了排序但实际提升性能很有限。相对的 empno
  • 结论: 当范围条件和 group by 或者 order by 的字段出现二选一时 ,优先观察条件字段的过滤数量如果过滤的数据足够多,而需要排序的数据并不多时,优先把索引放在范围字段上反之,亦然

Show Profile

这个配合Explain来说,效果拔群。

-- 查看结果
show profiles;

-- 诊断SQL,(n为上一步前面的问题SQL数字号码)
show profile cpu,block io for query n;  

全局查询日志

永远不要在生产环境下开启这个功能。

码云仓库同步笔记,可自取欢迎各位star指正:https://gitee.com/noblegasesgoo/notes

如果出错希望评论区大佬互相讨论指正,维护社区健康大家一起出一份力,不能有容忍错误知识。
										—————————————————————— 爱你们的 noblegasesgoo
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值