国产分子动力学引擎——GPUMD本地部署教程:专为 NVIDIA GPU 加速设计

一、简介

GPUMD 是一款开源分子动力学模拟软件,由渤海大学樊哲勇教授团队主导开发,2017年首发1.0版本,持续迭代至3.9.4版本,是国内首个完全基于GPU加速的开源分子动力学软件,专为 NVIDIA GPU 加速设计。它使用 CUDA 提高计算效率,能够快速模拟原子尺度的物理过程。

GPUMD – Graphics Processing Units Molecular Dynamics — GPUMD documentation

二、安装步骤

1. 准备环境

Ubuntu 22.04 + CUDA 11.8环境下部署

要编译(和运行) GPUMD ,需要计算能力不低于 3.5 和 CUDA 工具包 9.0 或更高版本的 Nvidia GPU 卡。在 Linux 系统上,还需要至少支持 C++11 标准的 C++ 编译器。在 Windows 系统上,还需要 Microsoft Visual Studio 的编译器和 64 位版本的 make.exe

更新系统和安装必要工具:

确保安装了编译器(支持 C++11)、Make 工具和其他必要工具。

sudo apt update && sudo apt upgrade -y
sudo apt install -y build-essential git g++ make cmake wget m4 file

安装 CUDA Toolkit :
确保已经安装了 CUDA 11.8 ,并配置了路径:

export PATH=/usr/local/cuda-11.8/bin:$PATH
export LD_LIBRARY_PATH=/usr/local/cuda-11.8/lib64:$LD_LIBRARY_PATH

验证 CUDA 工具是否可用:

nvcc --version

2. 下载 GPUMD 源码

git clone https://github.com/brucefan1983/GPUMD.git
cd GPUMD

3. 编译:

cd /GPUMD/src
vim makefile

其中需要根据自己CUDA的架构支持修改 Makefile 中的 CUDA_ARCH参数(计算能力),如:

  • Tesla T4:-arch=sm_75
  • A100:-arch=sm_80
  • RTX 4090:-arch=sm_89

如果需要支持多架构,可根据自己的型号前往NVIDIA官网查看,这里列出部分:

image.png

其多架构的设置格式为:

CUDA_ARCH = -gencode=arch=compute_86,code=sm_86
-gencode=arch=compute_89,code=sm_89
-gencode=arch=compute_70,code=sm_70
-gencode=arch=compute_80,code=sm_80

如下图:

image.png

然后输入 make进行编译(注意:直接编译没有NetCDF和PLUMED功能支持):

image.png

然后点击

编译完成后输入 ls看看是否有 gpumd和 nep

image.png

4. 其它功能设置(可选)

安装并配置 NetCDF 支持

下载和解压 NetCDF-C 4.6.3

wget https://github.com/Unidata/netcdf-c/archive/refs/tags/v4.6.3.tar.gz
tar -xvzf v4.6.3.tar.gz
cd netcdf-c-4.6.3

配置和编译(设置安装路径为 /opt/netcdf)

./configure --prefix=/opt/netcdf --disable-netcdf-4 --disable-dap
make -j$(nproc)
make install

在这里:

--prefix指定安装路径,此处我设定为 /opt/netcdf

--disable-netcdf-4:禁用 NetCDF-4 的支持(GPUMD 暂不需要 NetCDF-4 功能)

--disable-dap:禁用 DAP(Distributed Access Protocol)

image.png

确认 NetCDF 是否已正确安装:

ls /opt/netcdf/bin

此时输出应该有:libincludebin

配置环境变量

安装完成后,需要将 netCDF 的 bin 目录添加到环境变量中,确保可以全局调用 nc-config 和其他工具:

echo 'export PATH=/opt/netcdf/bin:$PATH' >> ~/.bashrc
echo 'export LD_LIBRARY_PATH=/opt/netcdf/lib:$LD_LIBRARY_PATH' >> ~/.bashrc
source ~/.bashrc

测试是否正确配置:

nc-config --version

image.png

nc-config --help

image.png

配置 GPUMD 使用 NetCDF

在 GPUMD 的 makefile 中启用 USE_NETCDF 并更新相关路径。

cd /GPUMD/src
vim makefile

启用 USE_NETCDF支持:

CFLAGS = -std=c++14 -O3 $(CUDA_ARCH) -DUSE_NETCDF

设置 INCLDFLAGS 和 LIBS 变量(注意你的安装路径):

INC = -I/opt/netcdf/include
LDFLAGS = -L/opt/netcdf/lib
LIBS = -lnetcdf
  • INC:头文件目录。
  • LDFLAGS:库文件目录。
  • LIBS:链接静态库 libnetcdf.a
  • 安装并配置 PLUMED 支持

下载和解压 PLUMED

wget https://github.com/plumed/plumed2/releases/download/v2.8.2/plumed-2.8.2.tgz
tar -xvzf plumed-2.8.2.tgz
cd plumed-2.8.2

配置和编译(安装到 /opt/plumed 路径,可以修改)

./configure --prefix=/opt/plumed --disable-mpi --enable-openmp --enable-modules=all
make -j$(nproc)
make instal

image.png

如果需要启用 Python 支持 ,可以在配置时添加相关参数,例如:

./configure --enable-python

配置环境变量

将以下内容添加到 ~/.bashrc 文件中:

export PLUMED_KERNEL=$HOME/plumed/lib/libplumedKernel.so
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$HOME/plumed/lib
export PATH=$PATH:$HOME/plumed/bin

使配置生效:

source ~/.bashrc

验证安装

检查 plumed 可执行文件是否可用

/opt/plumed/bin/plumed-config --versio

image.png

如果需要在全局使用 plumed 命令,可以将其路径添加到环境变量中:

echo 'export PATH=/opt/plumed/bin:$PATH' >> ~/.bashrc
source ~/.bashrc

使用 plumed help可以查看帮助信息

image.png

配置 GPUMD 使用 PLUMED

编辑 GPUMD 的 makefile,启用 USE_PLUMED 并更新路径。

cd /GPUMD/rsc
vim makefile

启用 USE_PLUMED

CFLAGS = -std=c++14 -O3 $(CUDA_ARCH) -DUSE_PLUMED

设置 INCLDFLAGS 和 LIBS 变量:

INC = -I/opt/plumed/include
LDFLAGS = -L/opt/plumed/lib -lplumed -lplumedKernel

如果加上前面的NetCDF则makefile文件中结果应该如下:

CC = nvcc
CUDA_ARCH = -gencode=arch=compute_86,code=sm_86 \
            -gencode=arch=compute_89,code=sm_89 \
            -gencode=arch=compute_70,code=sm_70 \
            -gencode=arch=compute_80,code=sm_80

ifdef OS # For Windows with the cl.exe compiler
CFLAGS = -O3 $(CUDA_ARCH)
else # For linux
CFLAGS = -std=c++14 -O3 $(CUDA_ARCH) -DUSE_NETCDF -DUSE_PLUMED
endif
INC = -I/opt/netcdf/include -I/opt/plumed/include 
LDFLAGS = -L/opt/netcdf/lib -L/opt/plumed/lib 
LIBS = -lnetcdf -lplumed -lplumedKernel 

image.png

重新构建 GPUMD

检查库是否存在,确保 NetCDF 和 PLUMED 的库文件存在于指定路径中:

ls /opt/netcdf/lib/libnetcdf.a
ls /opt/plumed/lib/libplumed.so
ls /opt/plumed/lib/libplumedKernel.so

image.png

在最后编译之前还需要在makefile中添加一些东西,防止编译失败:

1.确认 libcusolver.so 的路径,需要执行以下命令来查找 libcusolver.so

find /usr/local/cuda* -name "libcusolver.so"

image.png

我的位于 /usr/local/cuda-11.8/targets/x86_64-linux/lib路径下。

2.修改 Makefile:在 LDFLAGS 中添加 -lcusolver和 libcublas,以显式链接 cusolver 和 libcublas库。如:

LDFLAGS = -L/opt/netcdf/lib -L/opt/plumed/lib -L/usr/local/cuda-12.1/lib64
LIBS = -lnetcdf -lplumed -lplumedKernel -lcusolver -libcubla

image.png

然后使用下列命令进行编译:

cd /GPUMD/src
make clean
make -j$(nproc)

确认可执行文件是否生成:

ls gpumd nep
# 应看到 gpumd 和 nep 两个可执行文件

最后设置GPUMD的全局变量:

vim ~/.bashrc
export PATH=$PATH:/GPUMD/src

保存退出后:

source ~/.bashrc
gpumd

image.png

三、使用方法

GPUMD 使用简单的文本文件作为输入,主要包括:

  • input.gpumd:主配置文件,定义模拟参数
  • coord.xyz:原子坐标文件
  • potential.gpumd:定义势能参数

进入需要模型的目录后,GPUMD的运行命令如下:

gpumd -i input.gpumd

image.png

平台镜像在GPUMD中安装了NetCDF和PLUMED,可通过 gpumd运行

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值