一、介绍
LoRA-scripts(又名 SD-Trainer),是一个专为训练低秩自适应(LoRA)模型设计的开源工具集主要应用于Stable Diffusion等AI绘图模型的微调,帮助用户高效创建定制化风格、角色或概念的轻量级模型。目前已经包含FLUX模型的lora训练。
二、部署流程
python:3.10(建议使用conda创建虚拟环境)
Git
环境 | 版本 |
---|---|
Python | =3.10 |
Ubtuntu | =22.0.4 |
CUDA | =12.4 |
1.创建虚拟环境
1.1 安装 Miniconda
步骤 1:更新系统
首先,更新您的系统软件包:
sudo apt update
sudo apt upgrade -y
步骤 2:下载 Miniconda 安装脚本
访问 Miniconda 的官方网站或使用以下命令直接下载最新版本的安装脚本(以 Python 3 为例):
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh
步骤 3:验证安装脚本的完整性(可选)
下载 SHA256 校验和文件并验证安装包的完整性:
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh.sha256
sha256sum Miniconda3-latest-Linux-x86_64.sh
比较输出的校验和与.sha256 文件中的值是否一致,确保文件未被篡改。
步骤 4:运行安装脚本
为安装脚本添加执行权限:
chmod +x Miniconda3-latest-Linux-x86_64.sh
运行安装脚本:
./Miniconda3-latest-Linux-x86_64.sh
步骤 5:按照提示完成安装
安装过程中,您需要:
阅读许可协议 :按 Enter 键逐页阅读,或者按 Q 退出阅读。
接受许可协议 :输入 yes 并按 Enter。
选择安装路径 :默认路径为/home/您的用户名/miniconda3,直接按 Enter 即可,或输入自定义路径。
是否初始化 Miniconda :输入 yes 将 Miniconda 添加到您的 PATH 环境变量中。
步骤 6:激活 Miniconda 环境
安装完成后,使环境变量生效:
source ~/.bashrc
步骤 7:验证安装是否成功
检查 conda 版本:
conda --version
步骤 8:更新 conda(推荐)
为了获得最新功能和修复,更新 conda:
conda update conda
1.2.创建虚拟环境
conda create -n lora python=3.10
2.下载 PyTorch
#进入虚拟环境
conda activate lora
#下载pytorch,根据自己的cuda选择对应的torch版本,我这里是cuda-12.4
pip install torch==2.4.1 torchvision==0.19.1 torchaudio==2.4.1 --index-url https://download.pytorch.org/whl/cu124
3.使用子模块克隆仓库
git clone --recurse-submodules https://github.com/Akegarasu/lora-scripts
cd lora-scripts
2.安装项目所需依赖
运行install.bash将创建一个 venv 并安装必要的依赖。
bash install.bash
三、启动
当全部依赖安装好后,进入/lora-scripts路径,还需要手动进入venv环境:
source venv/bin/activate
然后,启动命令为:
bash run_gui_cn.sh
然后项目就正常启动了,访问暴露的端口即可看到训练界面: