启发式算法

本文深入探讨了各种生物群体智能优化算法,包括蚁群算法、粒子群算法等,并介绍了近年来提出的一些新型算法,如人工蜂群算法、蝙蝠算法、鲸鱼优化算法等,展示了这些算法在解决复杂优化问题中的应用潜力。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  1. 论文

生物群体智能优化算法

        群体智能优化算法的发展最先是受到自然界中昆虫等群体行为的激发而提出的。在群体智能优化算法发展过程中,最著名的两个算法分别是蚁群算法和粒子群算法。

人群搜索算法:Seeker optimization algorithm(2006)Seeker Optimization Algorithm | SpringerLink

入侵杂草优化算法:A Novel Numerical Optimization Algorithm Inspired from Weed Colonization(2006)A novel numerical optimization algorithm inspired from weed colonization - ScienceDirect

人工蜂群算法:A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm(2007)A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm | SpringerLink

鸽群优化算法:Pigeon-inspired optimization: a new swarm intelligence optimizer for air robot path planning(2008)IJICC_template (buaa.edu.cn)

帝国竞争算法:Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition(2008)Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition | IEEE Conference Publication | IEEE Xplore

萤火虫算法:Firefly algorithms for multimodal optimization(2009)Firefly Algorithms for Multimodal Optimization | SpringerLink

布谷鸟算法:Cuckoo search via Lévy fli

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值